期刊文献+

基于状态空间的贝叶斯跳跃厚尾金融随机波动模型研究 被引量:8

Bayesian Analysis of Heavy-tailed Financial Stochastic Volatility Models with Jumps Based on its State Space
原文传递
导出
摘要 针对金融市场中跳跃特征的刻画问题,提出了贝叶斯跳跃厚尾随机波动模型。通过随机波动模型的结构分析和状态空间转换,设计了模型参数估计的MCMC算法,利用Kalman滤波和高斯模拟平滑方法估计模型的潜在波动,运用贝叶斯因子对随机波动类模型进行比较分析,并利用中国和美国的股市收益数据进行实证分析。研究结果表明:在刻画中、美两国股票市场的波动特征方面,跳跃厚尾随机波动模型要明显优于厚尾随机波动模型和标准随机波动模型,并且金融危机背景下的中国和美国股票市场都具有明显的波动持续性以及跳跃特征。 This paper proposes the Bayesian heavy-tailed stochastic volatility models with jumps to describe the jumps characteristics in financial market.In terms of the volatility models' structure and their state space transition,we construct a Markov Chain Monte Carlo algorithm to estimate parameters,utilize Kalman filters and Gaussian simulation smoother to analyze the latent volatility implied in models,and compare volatility models through Bayesian factors.Then the suggested approach is applied to analyze the volatility character of the stock market in China and America.The results show that the jump character is significant both in China and America stock market,and the heavy-tailed stochastic volatility model with jumps is superior to the standard volatility model in depicting volatility character.
出处 《中国管理科学》 CSSCI 北大核心 2010年第6期17-25,共9页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70771038 71031004) 教育部留学回国人员科研启动基金项目(教外司留[2010]609) 教育部长江学者与发展创新团队项目 湖南省自然科学基金创新群体项目(09JJ702)
关键词 随机波动 状态空间 KALMAN滤波 跳跃过程 贝叶斯因子 stochastic volatility state space Kalman Filter jump process bayesian factor
  • 相关文献

参考文献25

  • 1Engle, R. E.. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation [J]. Econometrica, 1982, 50(4) : 987-1008.
  • 2Taylor, S. J.. Modeling financial time series [M]. John Wiley & Sons Press, New York, 1986.
  • 3Geweke, J.. Comment on Bayesian analysis of stochastic volatility [J]. Journal of Business and Economics Statistics, 1994, 12(4): 371-417.
  • 4Jacquier, E. , Poison, NG, Rossi PE. Bayesian analysis of stochastic volatility models[JJ. Journal of Business, 1994, 12(4): 371-388.
  • 5Jacquier, E. , Polson N. G. , Rossi, P. E.. Bayesian analysis of stochastic volatility models with fat-tail and correlated errors [J]. Journal of Econometrics, 2004, 122(1) : 185-212.
  • 6Chib, S., Nardari, F., Shephard, N.. Markov chain Monte Carlo methods for stochastic volatility models [J]. Journal of Econometrics, 2002, 108(2): 281-316.
  • 7Eraker, B. , Johanners, M. , Poison, N. G.. The impact of jumps in returns and volatility [J]. Journal of Finance, 2003, 53(3) :1269-1330.
  • 8Nakajima, J. , Omori, Y.. Leverage, heavy-tails and correlated jumps in stochastic volatility models [J].Computational Statistics and Data Analysis, 2009, 53 (6) : 2335-2353.
  • 9Kobayashi, M.. Testing for jumps in the stochastic volatility models [J]. Mathematics and Computers in Simulation, 2009, 79(8): 2597-2608.
  • 10孟利锋,张世英,何信.厚尾SV模型的贝叶斯分析及其应用研究[J].西北农林科技大学学报(社会科学版),2003,3(6):88-92. 被引量:8

二级参考文献137

共引文献109

同被引文献121

引证文献8

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部