期刊文献+

基于经验模态分解的地震相分析技术 被引量:9

Seismic facies analysis technique based on the Empirical Mode Decomposition
下载PDF
导出
摘要 经验模态分解(EMD)方法是希尔伯特—黄变换的核心部分,可以将地震数据分解为多阶内蕴模态函数(IMF)分量,不同IMF分量具有不同的频率特性,不同的IMF分量对地震相的敏感程度不同,反映不同的地质信息。利用EMD方法结合kohonen神经网络的地震相分析可进行断层识别以及储层预测。文中将EMD方法应用于中国西部的实际地震资料分析,利用重构信号和分解得到的IMF分量进行波形地震相分析。模型试算和实际资料应用结果表明,用感兴趣的IMF分量能够重构信号,重构后的地震信号能够更加清晰地显示断层展布特征、有利储层范围等,提高了地震资料的信噪比和分辨率,对断层展布特征的认识和油气预测具有重要的参考价值。 The EMD method is the central part for Hilbert-Huang transform.With the method the seismic data can be decomposited into multi-order IMF components,different IMF component has different frequency characteristics which reflects different geological information.The seismic facies analysis which is based on the EMD method and the Kohonen neural network method can be used in fault identification and reservoir prediction.In this paper the EMD method was used in the field seismic data processing in the western of China,waveform seismic facies analysis was conducted based on the IMF components which were obtained by signal reconstruction and decomposition.The model trial calculation and application results of the field data show that using of the interested IMF component could reconstruct signal,and the reconstructed signals can better display fault distribution characteristics and favorite reservoir range,as well as raise both the signal to noise ratio and the resolution of the seismic data,they have important reference values for understanding the fault distribution characteristics and the reservoir prediction.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2010年第A01期145-149,共5页 Oil Geophysical Prospecting
关键词 希尔伯特—黄变换 经验模态分解 内蕴模态函数 波形分类 地震相分析 Hilbert-Huang Transform,Empirical Mode Decomposition(EMD),Intrinsic Mode Function(IMF),seismic facies analysis
  • 相关文献

参考文献17

  • 1Huang N E, Zheng Shen, Long S R et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analyses. Proc R Soc Lond, 1998, 454:903-995.
  • 2Huang N E, Wu M C, Long S R et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc Lond, 2003,459: 2317-2345.
  • 3Huang N E, Man-Li Wu et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models In Business And Industry, 2003,19 : 245 - 268.
  • 4Denis Donnelly. The Fast Fourier and Hilbert-Huang Transforms: A Comparison. International Journal of Computers, Communications & Control, 2006, 1(4) :45-52.
  • 5Morlet J et al. Wave propagation and sampling theorypartz. Sampling Theory and Complex Waves, 1982, 47(2) :222-236.
  • 6Yih Jeng,Ming-Juin Lin et al. Noise reduction and data recovery for a VLF-EM survey using a nonlinear decomposition method. Geophysics, 2007, 72 ( 5 ) : F223-F235.
  • 7Maza Bekara, PGS, and Mirko van der Baan. Random and coherent noise attenuation by empirical mode decomposition. SEG Technical Program Expanded Abstracts, 2008,27.. 2591-2595.
  • 8Bradley Matthew Battista,Camelia Knapp et al. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics, 2001,66 ( 1 ) : 294 - 307.
  • 9Paul A Hwang, Huang N E, Wang David W. A note on analyzing nonlinear and nonstationary ocean wave data. Applied Ocean Research, 2003, (25) : 187- 193.
  • 10段生全,贺振华,黄德济.HHT方法及其在地震信号处理中的应用[J].成都理工大学学报(自然科学版),2005,32(4):396-400. 被引量:40

二级参考文献35

共引文献176

同被引文献125

引证文献9

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部