期刊文献+

模拟退火改进K均值算法在镜头聚类中的应用 被引量:3

Simulated Annealing K-means Clustering Algorithm for Video Shots
下载PDF
导出
摘要 针对基于内容的视频检索中的镜头聚类问题,采用了一种基于模拟退火思想改进的K均值聚类算法.该方法提取视频帧的时间信息、均值、方差、偏度和信息熵等颜色直方信息作为特征,利用模拟退火算法全局寻优的能力来改善K均值聚类易陷入局部极值的缺点,从而提高视频镜头聚类的准确性.理论分析和实验结果表明该方法是一种有效的视频镜头聚类算法. This article proposes a simulated annealing K-means clustering algorithm for video shots,which is very useful and important in CBVR(Content-based Video Retrieval).In the algorithm,time features and color features that containe mean values,variance,skewness,entropy of information and so on were used as feature vectors.Then we use the global optimization ability of simulated annealing to remedy the local extremum shortcoming of K-means,so that we can increase the clustering accuracy for video shots.The theoretical analysis and experimental results witness that our algorithm is an efficient shot clustering algorithm.
作者 李健 宋立新
出处 《哈尔滨理工大学学报》 CAS 北大核心 2010年第6期13-16,共4页 Journal of Harbin University of Science and Technology
关键词 基于内容的视频检索 模拟退火 视频镜头聚类 K均值聚类 content-based video retrieval simulated annealing clustering algorithm for video shots k-means
  • 引文网络
  • 相关文献

参考文献10

  • 1SHEN H T, OOI B C, ZHOU X F. Towards Effective Indexing for very Large Video Sequence Database [ C ]//Proceedings of ACM SIGMOD Int. Conf. on Management of Data, 2005.
  • 2WANG Peng, CAI Rui, YANG ShiQiang. Improving Classification of Video Shots Using Information-theoretic co-clustering: Circuits and Systems [ C ]//ISCAS 2005, IEEE International Symposium on Beijing,2005:964 - 967.
  • 3蔺旭东,曾晓宁,薄静仪.一种基于支持向量的镜头聚类算法[J].计算机应用,2007,27(9):2143-2146. 被引量:1
  • 4廖嘉,张博,王国仁,李淼.逐步求准的视频镜头聚类算法[J].小型微型计算机系统,2008,29(7):1272-1276. 被引量:1
  • 5HANJALIC A, ZHANG Hong-Jiang. An Integrated Scheme for Automated Video Abstraction Based on Unsupervised Cluster-va- lidity Analysis[ C]//IEEE Transactions on Circuits and Systems for Video Technology, Netherlands, 1999 : 1280 - 1289.
  • 6BOTTOU L, BENGIO Y. Convergence Properties of the K-means algorithm[ C ] // Advances in Neural Infor-mation Proeessing Sys- tems 7 Cambridge, America, MIT Press, 1995:585 - 592.
  • 7LI Jinjiang, FAN Hui, YUAN Da, et al. Kernel Function Cluste- ring Based on Ant Colony Algorithm [ C ] //Fourth International Conference on Natural Computation, IEEE 2008 Jinan, 2008:645 -649.
  • 8ZHANG Zhenya, CHENG Hongmei, CHEN Wanli, et al. Corre- lation Clustering Based on Genetic Algorithm for Documents Clus- tering[ C ] //2008 IEEE Congress on Evolutionary Computation Heifei ,2008:3193 - 3198.
  • 9刘伟民,郑爱云,李苏剑,赵方庚,孙江生.模拟退火K均值聚类算法及其应用研究[J].微计算机信息,2008,24(21):182-184. 被引量:12
  • 10RICHARD Fabera. Dynamic Optimization with Simulated Annea- ling [ J ]. Computers and Chemical Engineering, 2005,29 ( 2 ) : 273 - 290.

二级参考文献22

  • 1王彦棡,马驷良.基于关键帧提取的视频分割方法[J].吉林大学学报(理学版),2004,42(4):570-571. 被引量:3
  • 2施智平,李清勇,史俊,史忠植.基于关键帧序列的视频片段检索[J].计算机应用,2005,25(8):1783-1785. 被引量:2
  • 3王华伟,施智平,史忠植,胡宏.一种基于子镜头聚类的情节代表帧选取方法[J].计算机工程与应用,2005,41(27):157-159. 被引量:2
  • 4刘秋菊,王仲英,刘素华.基于遗传模拟退火算法的模糊聚类方法[J].微计算机信息,2006,22(02Z):270-272. 被引量:18
  • 5BENNETT KP,DEMIRIZ A.Semi-supervised support vector machines[C]// Proceedings of neural information processing systems.Cambridge:MIT Press,1999:368-374.
  • 6SCHOLKOPF B,SMOLA A,MULLER K R.Kernel principal component analysis[C]// Proceedings of International Conference on Artificial Neural Networks Lecture Notes in Computer Science.Berlin:Springer-Verlag,1997:583-588.
  • 7ASA B-H,HORN D,SIEGELMANN HT,et al.Support vector clustering[J].Journal of Machine Learning Research,2001(2):125-137.
  • 8ROBERTS S J.Non-parametric unsupervised cluster analysis[J].Pattern Recognition,1997,30(2):261-272.
  • 9RUI Y,HUANG T S,MEHROTRA S.Exploring video structure beyond the shots[C]// Proceedings of IEEE International Conference on Multimedia Computing and Systems.[S,l.]:IEEE Press,1998:237-240.
  • 10Hanjalic A, Zhang H. An integrated scheme for automated video abstraction based on unsupervised cluster-valldity analysis[C]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(8):1280-1289.

共引文献11

同被引文献20

引证文献3

二级引证文献8

;
使用帮助 返回顶部