期刊文献+

三体系统量子纠缠度特性研究 被引量:2

Quantum entanglement degree of three-body systems
下载PDF
导出
摘要 应用量子计算方法,对三原子体系中三体间、两两间以及Tavis-Cummings模型系统的纠缠度进行了详细计算.通过求解原子与光场相互作用系统态矢满足的薛定谔方程,得出了该模型三体间纠缠度随时间的演化规律.结果表明:原子光场相互作用系统的纠缠度呈现随时间变化的周期振荡性,周期大小与系统初始状态有关.系统中三体间的纠缠度与三体中两两间纠缠度的振荡周期有关.随着时间的变化,体系由开始的非纠缠状态可演化为三体最大或部分纠缠态. Using the method of quantum calculation,the entanglement degrees of the threebody system,any two-body among the them,and the Tavis-Cummings model system are calculated in detail.The evolution property of three-body entanglement degree is showed via solving the Schrdinger equation of the atom-light field system.It is found that the entanglement degree of the atom-light field system shows the periodic oscillations with the time and the cycle is closely related to the initial state of the system.The entanglement degree in the three-body system has the same cycle as that of the any two-body in the three-body system.The system will evolve to a three-body maximum or partly entangled state from the initial non-entangled state.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期33-37,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省自然科学基金资助项目(SJ08A25) 陕西省教育厅专项科研基金资助项目(08JK286)
关键词 量子光学 纠缠态 三体纠缠 纠缠度 quantum optics entangled state tripartite entanglement entanglement degree
  • 相关文献

参考文献18

  • 1周正威,郭光灿.量子信息讲座续讲 第三讲 量子纠缠态[J].物理,2000,29(11):695-699. 被引量:26
  • 2Schlienz J, Mahler G. Description of entanglement[J]. Physical Review: A, 1995, 52(6):4396-4404.
  • 3查新未.量子纯态纠缠态的构成与纠缠度[J].西安邮电学院学报,2003,8(1):56-58. 被引量:10
  • 4ShiMJ DuJF ZhuDP.Entanglement of quantum pure states [J].物理学报,2000,49(05):0825-0829.
  • 5Bennett C H, Vincenzo D P, Smolin J A, et al. Mixedstate entanglement and quantum error eorrection[J]. Physical Review: A, 1996, 54:3824-3851.
  • 6Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: necessary and sufficient conditions[J]. Physics Letters: A, 1996, 223(25):1-8.
  • 7Vedral V, Plenin M B, Rippin M A, et al. Quantifying entanglement[J]. Physical Review Letters, 1997,78: 2275-2279.
  • 8Zheng Shibiao, Guo Guangcan. Efficient scheme for two- atom entanglement and quantum information processing in cavity QED[J]. Physical Review Letters, 2000,85: 2392-2395.
  • 9Knoll L, Orlowski A. Distance between density opera tor: Application to the Jaynes-Commings model[J] Physical Review: A, 1995, 51 : 1622-1630.
  • 10Zheng Shibiao. One-step synthesis of multiatom Green- herger-Horne-Zeilinger states[J]. Physical Review Letters, 2001, 87:2304041-2304044.

二级参考文献23

  • 1郭光灿(译).费曼处理器[M].江西教育出版社,1999.49.
  • 2苏如铿.量子力学[M].上海:复旦大学出版社,1997.621-634.
  • 3Horodecki M, Horodecki P and Horodecki R 2000 phys Rev Lett.84 2014.
  • 4Zheng S B and Guo G C 2000 phys Rev Lett. 85 2392.
  • 5Tong Z Y and Kuang L M 2000 Chin phys Lett. 17 469.
  • 6Li C X and Fang M F 2003 Chin phys 12 294.
  • 7Bogoliubov N M et 02 1996 J Phys . A : Math Gen . 29 6305.
  • 8Seke J and Rattay F 1989 phys Rev A 39 171.
  • 9Bermett C H et o2 1993 phys Rev Lett. 70 1895.
  • 10Ye L and Guo G C 2002 Chin phys 11 996.

共引文献75

同被引文献26

  • 1Einsten A, Podolsky B, Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete [J]. Physics Review, 1935, 48(10):696-702.
  • 2Dur W, Vidal G, Cirac J I. Three Qubits Can Be Entangled in Two Inequivalent Ways [J]. Physical Review A, 2000, 62(6): 062314.
  • 3Kruszynska C, Krau B. Multipartite Entanglement and Global Information [J]. Quantum Physics, 2008, 79: 052304.
  • 4PAN Jianwei, Simon C, Brukner C, et al. Entanglement Purification for Quantum Communication [J]. Nature,2001, 410: 1067-1070.
  • 5PAN Jianwei, Gasparoni S, Ursin R, et al. Experimental Entanglement Purification of Arbitrary Unknown States [J]. Nature, 2003, 423: 417-421.
  • 6FAN Heng. Remarks on Entanglement Assisted Classical Capacity [J]. Phys Lett A, 2003, 313(3): 182-187.
  • 7Horodecki R, Horodecki P, Horodecki M, et al. Quantum Entanglement [J]. Reviews of Modern Physics, 2009, 81 : 865-942.
  • 8LI Ming, FEI Shaoming, Lijost X L. Quantum Entanglement: Separability, Measure, Fidelity of Teleportation and Distillation [J]. Advances in Mathematical Physics, 2010, 2010: 745-750.
  • 9HOU Jinchuan. A Characterization of Positive Linear Maps and Criteria of Entanglement for Quantum States [J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(38): 385201.
  • 10HOU Jinchuan, GUO Yu. Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems [J]. International Journal of Theoretical Physics, 2011, 50(4) : 1245-1254.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部