摘要
在应用拉格朗日松弛法解决电力系统机组组合问题时,解振荡现象是经常碰到的既严重又难以解决的问题,造成这种现象的原因往往是由于相同机组对应的子问题完全同构而导致相同机组同时启停,由此而得到的解有可能极大的偏离了原问题的最优解。通过对一个由于具有两个相同机组而造成解振荡现象的简单例子进行了分析,提出了利用对参数进行微小扰动解决相同机组组合问题的方法,通过对10个火电机组调度实例的验证,发现参数扰动法不仅解决了相同机组组合问题中的解振荡现象。
Solution oscillation is a severe but inherent disadvantage in applying Lagrangian relaxation based methods for unit commitment. Serious oscillation may be caused by discrete decision variables of homogeneous subproblems and the dual solution may be far away from the optimal schedule. In this paper, the solution oscillation caused by homogenous subproblems in Lagrangian relaxation framework is thoroughly analyzed through an example with two identical units. Based on this analysis, A changing parameters method is applied in this paper to reduce Solution Oscillations of homogenous Unit Commitment. Numerical testing for a short term generation scheduling problem with two groups of identical units shows that solution oscillation is greatly reduced and the feasible and stable generation schedule is significantly improved.
出处
《系统工程理论方法应用》
1999年第2期53-59,共7页
Systems Engineering Theory·Methodology·Applications
关键词
拉格朗日松驰法
机组组合
电力系统调度
Lagrangian relaxation unit commitment power generation scheduling