期刊文献+

一类具有免疫时滞的病毒动力学模型的稳定性分析 被引量:11

Stability analysis of a viral dynamic model with immune time delay
下载PDF
导出
摘要 建立和分析了一类具有CTL免疫反应且带有免疫时滞的病毒动力学模型.讨论了系统解的有界性,并获得了无病平衡点全局渐近稳定以及正平衡点稳定的条件.最后借助Matlab对模型进行了数值模拟. In this paper, an viral dynamic model with immune time delays is built and analyzed. We discussed the boundedness of the solution and obtained the sufficient conditions of the global stability of the infection-freee quilibrium and the local stability of the endemic equilibrium. Last the numerical simulations is given.
出处 《纯粹数学与应用数学》 CSCD 2011年第1期37-44,共8页 Pure and Applied Mathematics
基金 山西省自然科学基金(2009011005-3) 山西省重点扶持学科项目 运城学院基础研究项目(JC-2009021)
关键词 CTL免疫反应 平衡点 时滞 数值模拟 CTL immune equilibrium time delay numerical simulations
  • 相关文献

参考文献8

  • 1Bonhoeffer S,May R M,Shaw G M,et al.Virus dynamics and drug therapy[J].Proc.Nat.Acad.Sci.USA,1997,94(13):6971-6976.
  • 2Nowak M A,May R M.Virus Dynamics:Mathematical Principles of Immunology and Virology[M].New York:Oxford University Press,2000.
  • 3Xie Qizhi,Huang Dongwei,Zhang Shuangde,et al.Analysis of a viral infection model with delayed immune response[J].Applied Mathematical Modelling,2010,34(9):2388-2395.
  • 4Elder de Souza,Marcelo Lyra,Iram Gleria.Critical bifurcations and chaos in a delayed nonlinear model for the immune response[J].Chaos,Solitous and Fractals,2009,42(4):2494-2501.
  • 5庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 6陈美玲,朱惠延.具免疫时滞的HIV感染模型动力学性质分析[J].生物数学学报,2009,24(4):624-634. 被引量:13
  • 7Kuang Yang.Delay Differential Equations with Applications in Population Dynamics[M].Boston:AcademicPress,1993.
  • 8Cooke K L,van den Driessche P.On zeros of some transcendental equatious[J].Funkcialaj Ekvacioj,1986,29:77-90.

二级参考文献21

  • 1闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 2李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 3马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 4Perelson A S, Nelson P W. Mathematical analysis of HIV-1 Dynamics in vivo[J]. SIAM Review, 1999, 41(1):3-44.
  • 5Levy.艾滋病病毒与艾滋病的发病机制[M].北京:科学出版社,2000.
  • 6Kaifa Wang, Wendi Wang, Haiyan Pang, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica, 2007, D(226):197-208.
  • 7Martin Nomak A, Robert M. May, virus dynamics[M]. New York: OxfordUniversity Press, 2000.
  • 8Buric N, Mudrinic M, Vasovi N. Time delay in a basic model of the immune response[J]. Chaos, Solitons and Fractals, 2001, 12, 483-489.
  • 9Sandor Kovacs. Dynamics of an HIV/AIDS model-The effect of time delay[J]. Applied Mathematics and Computation, 2007, 188, 1597-1609.
  • 10Patrick Nelson W, Alan S. Perelson,Mathematical Analysis of delay differential equation model of HIV-1 infection[J]. Mathematical Biosciences, 2002, 179, 73-94.

共引文献35

同被引文献57

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 3Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in hepatitis B virus infection[J]. Proc. Natl. Acad. Sci. USA, 1996,93(9):4398-4402.
  • 4Nowak M A, Bangham C R M. Population dynamics of immune responses to persistent viruses[J]. Science, 1996,272(5258):74-79.
  • 5Ribeiro R M, Lo A, Perelson A S. Dynamics of hepatitis B virus infection[J]. Microbes Infection. 2002,4(8):829- 835.
  • 6Merrill S J. Modeling the Interaction of HIV with Cells of the Immune System[M]. New York: Springer- Verlag, 1989.
  • 7Murase A, Sasaki T, Kajiwara T. Stability analysis of pathogen-immune interaction dynamics[J]. J. Math. Biol., 2005,51(3):247-267.
  • 8Wang K, Wang W, Pang H, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica D: Nonl. Phen., 2007,226(2):197-208.
  • 9Buric N, Mudrinic M, Vasovic N. Time delay in a basic model of the immune response[J]. Chaos, Solitons & Fractals, 2001,12(3):483-489.
  • 10Cooke K L, van den Driessche P. On zeros of some transcendental equations[J]. Funkcialaj Ekvacioj, 1986,29:77-90.

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部