期刊文献+

可拓神经网络在变压器故障诊断中的应用 被引量:12

Application of extension neural network in transformer fault diagnosis
下载PDF
导出
摘要 可拓神经网络是一类新的神经网络,它结合了可拓学理论和人工神经网络技术。可拓神经网络已经在模式识别、故障诊断、分类聚类等领域有了成功的应用。针对变压器故障诊断的特点,提出一种基于可拓神经网络的电力变压器故障诊断方法。介绍了可拓神经网络;构造了基于可拓神经网络的故障诊断模型和算法设计,并将其应用到电力变压器的诊断识别;通过仿真实验验证了该方法简单易行、训练误差小、收敛时间快等优点。该方法具有一定的应用及推广能力。 Extension Neural Network(ENN) is a new kind of artificial neural network,which is a combination of extension theory and neural network.At present,there are many successful applications in some fields,such as pattern recognition,fault diagnosis,classification,clustering analysis and so on.Based on the characteristics of transformer fault diagnosis,a new power transformer fault diagnosis method based on ENN is discussed in this paper.The outline of ENN is introduced,the fault diagnosis model and algorithm based on ENN are designed,and its application to the diagnosis and recognition of power transformer is presented.Simulation experiment is conducted and the comparative results indicate that the proposed method is not only simpler to application,but also has lower training error and less convergence time.This method has certain value of application and expansion.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第7期8-11,共4页 Computer Engineering and Applications
基金 教育部科技重点项目No.107021~~
关键词 可拓神经网络 变压器 故障诊断 可拓理论 Extension Neural Network(ENN) transformer fault diagnosis extension theory
  • 相关文献

参考文献12

二级参考文献75

共引文献103

同被引文献147

引证文献12

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部