期刊文献+

链路预测的网络演化模型评价方法 被引量:4

New Method of Assessing Network Evolving Models Based on Link Prediction
下载PDF
导出
摘要 在网络演化研究领域,以前工作中对于网络演化机制之间的比较并没有公平、统一的标准。该文基于链路预测理论,采用极大似然估计思想建立了一套用于评价网络演化模型的体系。在基于自治系统的数据实验中,比较了GLP和Tang两个演化模型,结果显示GLP优于Tang,而且得到的最优参数也与其提出者给出的均不相同。实验结果表明基于一定规模为真实网络使用新参数生成的网络更加接近真实网络,并且本文的评价框架可以为模型参数的选取提供建议。 As the previous evaluation methods of evolving models can not be credible because of its inconformity, in this paper, we propose a new method by applying the theory of link prediction and maximum likelihood estimation. Based on the Internet autonomous system networks, we find that GLP is better than Tang which is not agreed with previous results. Moreover, the optimal parameters of these two evolving models are different from the original ones. The experimental results support our optimal parameters with which the corresponding models can generate more real networks.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第2期174-179,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(11075031)
关键词 评价方法 链路预测:极大似然估计 网络演化模型 evaluation link prediction maximum likelihood estimation network evolving model
  • 相关文献

参考文献19

  • 1DOROGOVTSEV S N,MENDES J F F,Evolution of networks[J].Advances in Physics,2002,51(6):1079-1187.
  • 2WATTS D J,STROGATZ S H.Collective dynamics of ‘small-world' networks[J].Nature,1998,393:440-442.
  • 3BARAB(A)SI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 4ZHOU S,MONDRAG(O)n R J.The rich-club phenomenon in the Internet topology[J].IEEE Commun Lett,2004,8(3):180-182.
  • 5RAVASZ E,BARABáSi A L.Hierarchical organization in complex networks[J].Phys Rev E,2003,67:026112.
  • 6CALDARELLI G,MARCHETTI R,PIETRONERO L.The fiactal properties of Internet[J].Europhys Lett,2000,52:386.
  • 7BIANCONI G,CALDARELLI G,CAPOCCI A.Loops structure of the intemet at the autonomous system level[J].Phys Rev E,2005,71:066116.
  • 8MAHADEVAN P,KRIOUKOV D,FOMENLOV M,et al.Lessons from three views of the internet topology[J].2005,arXiv:cs.NI/0508033.
  • 9MEDINA A,LAKHINA A,MATTA I,et al.BRITE:an approach to universal wpology generation[C]//Pwceedings of MASCOTS.Washington:IEEE Computer Society,2001:346-353.
  • 10BU T,TOWSLEY D.On distinguishing between Internet power law topology generators[C]//Proceedings of INFOCOM.New York:IEEE Press,2002,2:638-647.

二级参考文献66

  • 1GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12.
  • 2SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386.
  • 3ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73.
  • 4POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87.
  • 5O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30.
  • 6LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304.
  • 7LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031.
  • 8CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101.
  • 9HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137.
  • 10GUIMERA R,SALES-PARDO M.Missing and spurious interactions and the reconstruction of complex networks[J].Proc Natl Sci Acad USA,2009,106(52):22073-22078.

共引文献243

同被引文献117

  • 1方锦清.网络科学的理论模型探索及其进展[J].科技导报,2006,24(12):67-72. 被引量:26
  • 2Rabasi A L,Albert R. Emergence of scaling in random networks [J]. Science, 1999,286 : 509-512.
  • 3Boccalettia S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics[J]. Physics Reports, 2006,424 (4/5) : 175-308.
  • 4Milo R, Shen-Orr S, Itzkovitz S. Network motifs:simple building blocks of complex networks [J]. Science, 2002,298(5594):824- 827.
  • 5Shandilya S G,Timme M. Inferring network topology from com- plex dynamics [J]. New Journal of Physics, 2011,13(1) : 1-11.
  • 6Karsai M,Kivela M,Pan R K, et al. Small but slow world: how network topology and burstiness slow down spreading [J]. Physics Review E, 2011,83(2) : 1-4.
  • 7Larremore D B, Shew W L, Restrepo J G. Predicting criticality and dynamic range in complex networks: effects of topology [J]. Physical Review Letters,2011,106(5) : 1-4.
  • 8Perotti J I, Billoni O V, Tamarit F A, et al. Emergent self-or- ganized complex network topology out of stability constraints [J]. Physics Review Letters, 2009,103:108701-108704.
  • 9Zhu Gui-mei,Yang Hui-jie, Yin Chuan-yang, et al. Localizations on complex networks [J]. Physical Review E, 2008,77 (6) : 1-9.
  • 10Zhao Kang, Kumar A, Harrison T P, et al. Analyzing the resi- lience of complex supply network topologies against random and targeted disruptions [J]. IEEE Systems Journal, 2011,5 ( 1 ) :28- 39.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部