期刊文献+

Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer-Meshkov Instability 被引量:1

Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer-Meshkov Instability
下载PDF
导出
摘要 The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701(R)] is only valid in subsonic flows. The yon Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer- Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第2期325-334,共10页 理论物理通讯(英文版)
基金 Support by the Science Foundations of Laboratory of Computational Physics,Science Foundation of China Academy of Engineering Physics under Grant Nos.2009A0102005,2009B0101012 National Basic Research Program of China under Grant No.2007CB815105 National Natural Science Foundation of China under Grant Nos.11074300,11075021,and 11071024
关键词 lattice Boltzmann method Richtmyer-Meshkov instability compressible flows multiple- relaxation-time von Neumann stability analysis 格子玻尔兹曼方法 松弛时间 不稳定性 LB模型 传播媒介 物理分析 亚音速流动 稳定性分析
  • 相关文献

参考文献23

  • 1S. Succi, The Lattice Boltzmann Equation for Fluid Dy- namics and Beyond, Oxford University Press, New York (2001).
  • 2R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222 (1992) 145.
  • 3Aiguo Xu, G. Gonnella, and A. Lamura, Phys. Rev. E 67 (2003) 056105; Phys. Rev. E 74 (2006) 011505; Physica A 331 (2004) 10; Physica A 344 (2004) 750; Physica A 362 (2006) 42.
  • 4C. Aidun and J. Clausen, Annu. Rev. Fluid Mech. 42 (2010) 439.
  • 5F. Chen, A.G. Xu, G.C. Zhang, Y.J. Li, and S. Succi, Europhys. Lett. 90 (2010) 54003.
  • 6R.D. Richtmyer, Commun. Pure Appl. Maths. 8 (1960) 297.
  • 7E.E. Meshkov, Sov. Fluid Dyn. 4 (1969) 101.
  • 8L.D. Cloutman and M.F. Wehner, Phys. Fluid A 4 (1993) 1821.
  • 9R.L. Holmes, J.W. Grove, and D.H. Sharp, J. Fluid Mech. 301 (1995) 51.
  • 10R.L. Holmes, G. Dimonte, B. Fryxell, M.L. Gittings, D.H. Sharp, M. Schnerder, R.P. Weaver, and Q. Zhang, J. Fluid Mech. 389 (1999) 55.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部