期刊文献+

日冕物质抛射及其伴生的射电辐射观测特征 被引量:1

Observational Characteristics of CME Events and Associated Radio Emission
下载PDF
导出
摘要 统计分析了太阳活动周下降段(2003~2005年)发生的76个共生CME的射电爆发事件。射电爆发资料来自国家天文台和Culgoora的微波和米波频谱仪。在76个事件中有50个快速CME和26个慢速CME。从中发现,快速CME和慢速CME的产率分别随着太阳活动周的降低而下降和上升,这可能说明CME的产率与太阳活动周中日冕磁结构的位形和位置变化有关。同时也发现,射电爆发的类型和寿命有一个变化规律,即随着频率的降低射电爆发的寿命变长,此特征支持了伴生CME的II型爆发统一模型的思想。另外还发现在厘米—分米波范围,CME开始前后,容易发生射电III型爆发或快速精细结构。这说明射电辐射的精细结构可能是CME的前兆现象或CME早期发展阶段由于磁重联引发的低日冕小尺度磁扰动的结果。 We statistically analyze 76 radio-burst events associated with CME events during the period of 2003 - 2005, which is in the descending phase of solar activity cycle. The radio data are within the frequency range of 18 MHz to 7 200 MHz and are obtained from the LACSO/SOHO or the spectrometers of Culgoora and NAOC (National Astronomical Observatories of China). Out of the 76 events 50 and 26 are fast and slow, respectively. We find that the fractions of fast and slow CME events decrease and increase in the descending phase of solar activity cycle, respectively. This is possibly because of the correlation of the frequencies of CME events with the variations of structures and positions of solar magnetic fields during the solar activity cycle. Furthermore, we find a trend for types and durations of radio bursts. The durations decrease with the radio frequencies. The trend supports the idea of a unified model about type-Ⅱ radio bursts associated with CMEs. In addition, we find that type-Ⅲ bursts or fast fine structures (FS) frequently occur in the wavelength range of centimeters to meters just before or after the CMEs start. The radio FS could be interpreted as precursor phenomena of the CMEs or as the results of small-scale magnetic disturbances in the lower corona caused by magnetic reeonnections during the early phases of the CMEs.
出处 《天文研究与技术》 CSCD 2011年第2期95-99,F0002,F0003,共7页 Astronomical Research & Technology
基金 国家自然科学基金(10978006)资助
关键词 太阳 CME 射电爆发 Sun CME Radio burst
  • 相关文献

参考文献19

  • 1谢瑞祥,龚玲平,施硕彪.不同速度日冕物质抛射的多波段射电观测特征[J].天文研究与技术,2008,5(1):13-20. 被引量:2
  • 2V. N. Mel’nik,A. A. Konovalenko,H. O. Rucker,B. P. Rutkevych,V. V. Dorovskyy,E. P. Abranin,A. I. Brazhenko,A. A. Stanislavskii,A. Lecacheux.Decameter Type III-Like Bursts[J]. Solar Physics . 2008 (1)
  • 3B. V. Jackson,E. Hildner.Forerunners: Outer rims of solar coronal transients[J]. Solar Physics . 1978 (1)
  • 4Cecatto J R,Soares H S.Radio Emission Observed in Decimetric Waves Associated with theOnset of CMEs. Journal of Atmospheric and Solar Terrestrical Physics . 2005
  • 5Jackson B V,Sheridan K V,Dulk G Aet al.A Possible Association of Solar Type III Burstsand White Light Transients. Astronomical Society of Australia,Proceedings . 1978
  • 6Yan Y,Huang J,Chen Bet al.Diagnostics of Radio Fine Structures around 3 GHz withHinodeData in the Impulsive Phase of an X3.4/4B Flare Event on 2006 December 13. Publications of the Astronomical Society of Japan . 2007
  • 7Jackson B V,Dulk G A,Sheridan K V.The Association of Type III Bursts and CoronalTransient Activity. Solar and Interplanetary Dynamics:Proceedings of the Symposium . 1980
  • 8Morioka Akira,Miyoshi Yoshizum,Masuda Satoshiet al.Micro-Type III Radio Bursts. AJ . 2007
  • 9Klein K L,Krucker S,Trottet Get al.Coronal Phenomena at the Release of Solar EnergeticElectron Events. A&A . 2005
  • 10Michalek G,Zaczkowski R.Correlation between the Onset Times of CMEs and Type III RadioBursts. Solar Variability from Core to Outer Frontiers:The 10th EuropeanSolar Physics Meeting . 2002

二级参考文献5

共引文献1

同被引文献18

  • 1Hundhausen A J, Sawyer C B, House L, et al. Coronal mass ejections observed during the solar maximum mission:latitude distribution and rate of occurrence[J]. Journal of Geophysical Research-Space Physics, 1984, 89(A5):2639-2646.
  • 2Macqueen R M, Hundhausen A J. The propagation of coronal mass ejection transients[J]. Journal of Geophysical Research-Space Physics, 1986, 91(A1):31-38.
  • 3Cremades H, Bothmer, V. On the three-dimensional configuration of coronal mass ejections[J]. Astronomy & Astrophysics, 2004, 422(1):307-322.
  • 4Wang Yuming, Chen Caixia, Gui Bin, et al. Statistical study of CME source locations:understanding CMEs viewed in coronagraphs[J]. Journal of Geophysical Research-Space Physics, 2011, 116(A4):1451-1453.
  • 5Wang Y M, Wang S, Ye P Z. Multiple magnetic clouds in interplanetary space[J]. Solar Physics, 2002, 211(1):333-344.
  • 6Wang Y M, Ye P Z, Wang S. Multiple magnetic clouds:several examples during March-April 2001[J]. Journal of Geophysical Research-Space Physics, 2003, 108(A10):519-522.
  • 7Xiong Ming, Zheng Huinan, Wang Shui. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness[J]. Journal of Geophysical Research Atmospheres, 2007, 114(A11):1-14.
  • 8Lugaz N, Vourlidas A, Roussev I I. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere-application to CME-CME interaction[J]. Annales Geophysicae, 2009, 27(9):3479-3488.
  • 9Temmer M, Vrsnak B, Rollett T. CME-CME interaction during the 2010 August 1 events[J]. Copernicus, 2012, 14:1677.
  • 10Zhang J, Dere K P, Howard R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. Astrophysical Jouranal, 2003, 582(1):520-533.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部