期刊文献+

构造消环的LDPC码

Construction of Cycle-free LDPC Codes
下载PDF
导出
摘要 LDPC(Lower Density Parity Check)码是一类可以用非常稀疏的校验矩阵定义的线性分组纠错码.由于LDPC码校验矩阵的规律性可以用二分图表现出来,二分图中的环路也会影响到迭代译码的准确性和有效性,尤其是短环.本文给出了一种有效消去周长为4的短环的校验矩阵H的生成算法,并且对该算法构造的校验矩阵进行了仿真分析. The linear block code is called a binary Low Density Parity Check code if its parity-check matrix is a sparse matrix.For the features of parity-check matrix,a LDPC code can be illustrated by a Tanner graph.Cycles,especially short cycles in the Tanner graph,which lead to inefficient decoding and prevent the decoding algorithm from converging to the optimal decoding result.In this paper,we demonstrate that a detection method of short cycle presents generation algorithm of check matrix without cycle 4 and simulates the check-matrix.
出处 《常熟理工学院学报》 2011年第2期32-34,共3页 Journal of Changshu Institute of Technology
基金 湖南省教育厅科研资助项目(07C507)
关键词 LDPC码 二分图 周长 LDPC code Bipartite graph girth
  • 相关文献

参考文献4

二级参考文献31

  • 1何善宝,赵春明,姜明.LDPC码的一种循环差集构造方法[J].通信学报,2004,25(11):112-118. 被引量:11
  • 2R Gallager. Low - Density Parity - Cheek Codes [ J ].IRE Trans, Info, Theory, 1962, 7:21 -28.
  • 3D J C Mackay, R M Neal. Good Codes Based on Very Sparse Matrices, Cryptography and Coding[ A ]. 5th IMA Conf. C. Boyd[C]. 1995. 100 -111.
  • 4Y Kou, S Lin, M Fossorier. Low - density parity - check codes based on finite geometries: a rediscovery and new results[J]. IEEE Trans. Inform. Theory, 2001, 47(7) :2711 - 2736.
  • 5T Richardson, A Shokrollahi, R Urbanke. Design of capacity - approaching irregular low - density parity - check codes [ J ]. IEEE Transactions on Information Theory,2001,47:619 -637.
  • 6T Richardson, R L Urbanke. The Capacity of Low - density Parity Check codes Under Message - Passing Decoding[J]. IEEE Trans on Information Theory, 2001, 47(2) : 599 -618.
  • 7R M Tanner. A Reeursive Approach to Low Complexity Codes[J]. IEEE Trans. Inform. Theory, 1981, 27:533- 547.
  • 8N Wibeg, H -A Loeliger, R Kotter. Codes and Iterative Decoding on General Graphs [ J ]. Eru, Trans. Telecommun. , 1995, 6:513 -525.
  • 9Tannar, R M. Minimum -distance Bounds by Graph Analysis[Jl. IEEE Trans. Inform. Theory, 2001, 47:808 - 821.
  • 10F R Kschischang, B J Frey,H A Loeliger. Factor graphs and the sum - product algorithm [ J ]. IEEE Trans. Inform. Theroy, 2001,47(2) : 498 -519.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部