期刊文献+

双稳态随机共振系统参数选择快速算法及应用 被引量:4

A fast preference algorithm for bi-stable stochastic resonance systems and its application
下载PDF
导出
摘要 针对双稳态随机共振(SR)系统参数选择困难的问题,提出了基于龙格库塔数值算法的随机共振参数选择快速算法,并将其应用于目标线谱检测.首先对双稳态SR系统进行参数归一化,在此基础上提出了由输入信噪比来选择系统步长,并根据归一化频率和谐波估计幅值和来计算SR系统参数的参数选择快速算法.该算法能够对不满足绝热条件下的高频或大尺度离散信号进行处理,快速选择SR系统的系统参数,并根据龙格库塔数值算法求得输出序列.数值仿真验证了此算法的正确性,同时海试数据处理结果表明,该算法能够快速地确定合适的SR系统参数,使信噪比为1.013 5 dB的目标辐射线谱明显的凸显出来. A fast preference algorithm for stochastic resonance(SR) systems based on a Runge-Kutta algorithm which was applied in line-spectrum detection was put forward.The model of the bi-stable SR system was first unitary.Then the algorithm which calculated parameters according to the step chosen by an input SNR,the unitary frequency,and the amplitude estimated by a harmonic wave were given.This algorithm could be used to choose parameters while dealing with high frequency and large scale signals out of the adiabatic condition and resolving output data based on the Runge-Kutta algorithm.The validity of the algorithm was demonstrated by numerical simulation.Also,real data processing shows the algorithm can fix the parameters of an SR system quickly to enhance the target line-spectrum intensity of 1.0135 dB.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2011年第3期282-287,共6页 Journal of Harbin Engineering University
基金 国家科技重大专项基金资助项目(2008ZX05056-3) 哈尔滨工程大学校内基金资助项目(HEUFT08024)
关键词 随机共振 双稳态 线谱检测 龙格库塔算法 stochastic resonance bi-stable line-spectrum detection Runge-Kutta algorithm
  • 相关文献

参考文献15

  • 1BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance [J]. J Phys A, 1981, 14( 11): 453- 457.
  • 2BENZI R, PARISI G, STERA A, et al. Stochastic reso- nance in climatic change [J~. Tellus, 1982, 34(10) : 10-.
  • 3ASDIA S,TEWFIK A H. Detection of weak signals using a- daptive stochastic resonance [ C ]/! Proceedings of the 1995 IEEE International Conference on Acoustics Speech and Sig- nal Processing. ( s. 1. ) , 1995 : 1332-1335.
  • 4滕万龙,薛根,罗子健.基于DSP的随机共振检测系统[J].中国仪器仪表,2005(11):71-74. 被引量:3
  • 5FAUVE S, HELSLOT F. Stochastic resonance in a bistable system [ J ]. Phys Lett, 1983,16 ( l 1 ) :234-239.
  • 6XU B, DUAN F, BAO R. Stochastic resonance with tuning system parameters: the application bistable systems in sig- nal processing [ J ]. Chaos Solitons and Fractals, 2002,13 (5) :633-644.
  • 7MISONO M, KOHMOTO T. of information in a bistable 1998,58 (10) :5602-5607. Noise-enhanced transmission system [J]. Phys Rev E,.
  • 8张晓兵,董华玉,玄兆林.水声时变线谱建模与双稳态随机共振分析[J].应用声学,2008,27(4):283-287. 被引量:5
  • 9杨定新,胡茑庆.随机共振在微弱信号检测中的数值仿真[J].国防科技大学学报,2003,25(6):91-94. 被引量:36
  • 10MITAIM S, KO B K. Adaptive stochastic resonance [ J ]. Proceedings of the IEEE, 1998, 86 ( 11 ) :2152-2183.

二级参考文献15

  • 1胡岗.随机力与非线性系统[M].上海:上海教育科技出版社,1995..
  • 2Roberto Benzi, Alfonso Sutera, Angelo Vulpiani. The mechanism of stochastic resonance. J.Phys. A, 1981, 1453.
  • 3Green DM, Swets JA. Signal detection theory and psychophysics. Krieger, Huntington, N, Y.
  • 4Texas Instruments, TMS320C3X User's Guide, Texas Instrument Incorporated, 1997.
  • 5Texas Instruments, TMS320VC33 Digital Processor,Texas Instrument Incorporated, 2000.
  • 6Steeve Z, Pierre-Olivier. A stochastic resonance in locally optimal detectors. IEEE Transactions on Signal Processing. 2003, 51(12) :3177 -3181.
  • 7Godivier X, Rojas-Varela J, Chapeau-Blondeau F. Noiseassisted signal transmission via stochastic resonance in a diode nonlinearity. ELECTRONICS LETTERS. 1997, 33 (20) :1666 - 1668.
  • 8Gammaitoni L, Haanggi P, Jung P, et al. Stochastic Resonance. Review of Modern Physics, 1998, 70 (1):223 - 287.
  • 9Roy D. A new numeric-analytical principle for nonlinear deterministic and stochastic dynamical systems. Proceedings of Royal Society A, 2001 (457) :539 - 566.
  • 10Breen B J. Computational nonlinear dynamics: Monostable stochastic resonance and a bursting neuron model. USA: School of Physics of Georgia Institute of Technology, 2003.

共引文献40

同被引文献36

  • 1王志,艾延廷,沙云东.基于BP神经网络的航空发动机整机振动故障诊断技术研究[J].仪器仪表学报,2007,28(S1):168-171. 被引量:38
  • 2冷永刚,王太勇,郭焱,许俊艳.二次采样随机共振的工程应用研究[J].中国机械工程,2004,15(20):1847-1852. 被引量:18
  • 3林敏,黄咏梅.调制与解调用于随机共振的微弱周期信号检测[J].物理学报,2006,55(7):3277-3282. 被引量:48
  • 4Pearson K. On lines and planes of closest fit to sustems of points in space. Philosophical Magazine, 1901, 2:559 - 572.
  • 5Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech, 1999, 31: 417 -457.
  • 6Vincent H T, Hu S L J, Hou Z. Damage detection using empirical mode decomposition method and a- comparison with wavelet anal- ysis. Proceedings of the second Internaitonal Workshop on Struc- tural Health Monitoring. USA: Stanford, 1998, 891-900.
  • 7PEARSON K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Maga- zine, 1901,2(6) :559-572.
  • 8Benzi R, Sutera A, Vulpiani A. The Mechanism of Stochastic Resonance [J]. J Phys A, 1981, 14(11): 453-457.
  • 9Benzi R, Parisi G, Sutera A, et al. Stochastic Reso- nance in Climatic Change [J]. Tellus, 1982, 34 (10) : 10-16.
  • 10Ko J Y, Otsuka K, Kubota T. Quantum-Noise-In- duced Order in Lasers Placed in Chaotic Oscillation by Frequency-Shifted Feedback[J]. Phys Rev Lett, 2001.86(18) :4025-4028.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部