期刊文献+

基于矢量量化的婴儿哭声识别算法 被引量:2

VQ-based recognition algorithm for babies cries
下载PDF
导出
摘要 基于嵌入式微处理器的智能婴儿摇篮的功能需求,本文提出了一种针对婴儿哭声的语音识别算法。语音特征参数使用目前最广泛采用的MFCC参数,使用最大欧氏距离划分初始样本,使用LBG算法不断迭代优化得到最终码本。在婴儿哭声的识别阶段,提取待识别语音的MFCC特征参数与已有码本计算矢量量化误差,若矢量量化误差两次低于判断值,输出判别为婴儿哭声的结果。 For the requirements of embedded microprocessor-based smart baby cradle, In this paper, we bring forward a baby crying for speech recognition algorithms. Speech feature parameters using the most widely used MFCC parameters, using the maximum Euclidean distance the initial sample, using the LBG algorithm iteratively optimize the final code book. In the identification stage of Baby cries , the extraction to be recognized voice of the MFCC feature parameters with the existing code vector quantization error of this calculation, if the vector quantization error to judge the value of two lower than the output determine the outcome for the baby crying.
机构地区 上海理工大学
出处 《微计算机信息》 2011年第4期224-225,187,共3页 Control & Automation
基金 上海市研究生创新基金项目 基金申请人:赵文博 王艇艇 项目名称:基于嵌入式微处理器的智能婴儿摇篮 基金颁发部门:上海市教育委员会(JWCXSL1002)
关键词 矢量量化 婴儿哭声识别 梅尔频率倒谱参数 LBG算法 Vector Quantization Identification baby crying MFCC LBG
  • 相关文献

参考文献5

二级参考文献9

  • 1索忠伟,王建英,魏阳,吕雪.一种基于LMS改进算法的语音增强方法[J].微计算机信息,2006(04Z):237-238. 被引量:6
  • 2Skowronski M D, Harris J G. Increased MFCC Filter Bandwidth for Noise-Robust Phoneme Recognition[C]//Proc of IEEE Int'l Conf on Acoustics Speech and Signal Processing, 2002 : 801-804.
  • 3Hung W W,Wang H C. On the Use of Weighted Filter Bank Analysis for the Derivation of Robust MFCCs [J]. IEEE Signal Processing Letters,2001,8(3) : 70-73.
  • 4Zheng Fang , Zhang Guoliang, Song Zhanjiang. Comparison of Different Implementations of MFCC[J]. Computer Science & Technology, 2001,16(6) : 582-589.
  • 5MartinA. The DET Curve in Assessment of Detection Task Performance [C]//Proc of EuroSpeech' 97,1997 : 1895-1898.
  • 6Kotnik, B., Vlaj, D., Kacic, Z, Horvat, B., Robust MFCC Feature Extraction Algorithm using Efficient Additive and Convolutional Noise Reduction Procedures, ICSLP'02 Proceedings, Denver, Colorado, USA, pp.455- 448, 2002.
  • 7Martin, R., Spectral Subtraction Based on Minimum Statistics, In Proc. 7th European Signal Processing Conference, pp. 1182- 1185, Sept. 1997.
  • 8Kotnik, B., Kacic, Z, Horvat, B. A Multiconditional Robust Front-End Feature Extraction with a Noise Reduction Procedure Based on Improved Spectral Subtraction Algorithm. Eurospeech 2001 Proceedings, pp. 197 -200, Aalborg, Denmark, 2001.
  • 9Young, S., The HTK Book , Entropic Cambridge Research Laboratory, 2005.

共引文献22

同被引文献15

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部