期刊文献+

气液两相流波动信号多重分形去趋势波动分析 被引量:4

Multi-Fractal Detrended Fluctuation Analysis of Fluctuation Signal of Gas-Liquid Two-Phase Flow
原文传递
导出
摘要 为了研究不同流型压差波动信号的分形特征,本文首先讨论了多重分形去趋势波动分析对周期信号、随机信号和混沌信号的识别能力,然后运用多重分形去趋势波动分析方法对水平管内气-液两相流压差波动信号进行分析。通过计算广义Hurst指数、尺度函数、多重分形谱,细致量化了压差波动信号的局部及不同层次的波动奇异性。研究结果表明:压差波动信号具有长程相关性,而且是多重分形过程,多重分形谱参数可以反映不同流型的动力性特征。压差波动信号的多重分形分析有助于进一步理解流型转化的动力学特性。 In order to study the fractal feature of differential pressure fluctuation signal of the different flow regime,this paper discusses the recognition ability of periodic signals,random signals and chaotic signals first,and then analyzes the differential pressure fluctuation signal of the horizontal tube of gas-liquid two-phase flow based on the multi-fractal detrended fluctuation analysis method.Detailed quantification the volatility singularity of partial and different levels of the differential pressure fluctuation signal by calculating the generalized Hurst index,scaling function and multi-fractal spectrum.The results show that:the differential pressure fluctuation signal have long-range correlation,and is multi-fractal process.Multi-fractal spectrum parameters can reflect the dynamic characteristic of the different flow regime.Multi-fractal of differential pressure fluctuation signal analysis can help to understand the dynamic characteristic of flow regime transition further.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第5期795-798,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50706006)
关键词 气液两相流 流型 多重分形 去趋势波动分析 动力学特性 gas-liquid two-phase flow flow regime multi-fractal detrended fluctuation analysis dynamic characteristic
  • 引文网络
  • 相关文献

参考文献11

二级参考文献44

共引文献85

同被引文献48

  • 1谢华刚,阮怀宁,吴玲丽,赵正信,余华中,吴翔.复合型切缝药包机理分析及微差爆破试验[J].煤炭学报,2010,35(S1):68-71. 被引量:16
  • 2李文升,郭烈锦,谢晨,周宏亮,王玉博.集输立管内气水两相流压差信号的特征分析[J].工程热物理学报,2015,36(6):1247-1251. 被引量:12
  • 3王金东,王巍,李宏灿.往复压缩机轴承故障的多重分形特征提取[J].振动与冲击,2008,27(S):313-315.
  • 4Li M, Ma W X, Liu X J. Investigation of rolling bear- ing fault diagnosis based on multi-fractal and general fractal dimension[C] // Second Intelligent Computa- tion Technology and Automation. Zhangjiajie: IEEE Computer Society, 2009: 545-548.
  • 5Yu Y, Li B L, Shang J S, et al. The application of vibration signal muhi-fractal in fault diagnosis[C]// Second International Conference on Future Networks. Sanya: IEEE Computer Society, 2010: 164-167.
  • 6Halsey T C, Jensen M H, Kadanofflp, et al. Fractal measures and their singularities: the characterization of strange sets[J]. Physical Review A: 1986, 33(2) : 1141-1151.
  • 7Peng C K, Havlin S, Stanley H E, et al. Quantifica- tion of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J]. Chaos, 1995, 5(1): 82-87.
  • 8Kantelhardt J W, Zsehiegner S A, Braun P, et al. Multifratal detrended fluctuation analysis of nonsta- tionary time series[J]. Phsica A: 2002, 316(87) : 87- 114.
  • 9Turie E, Tadeo J L, Martin E. Molecularly imprin- ted polymeric fibers for solid phase microextraction [J]. AnalChem, 2007, 79(8): 3099-3104.
  • 10Lane M R B, Rocha, Benjamim R D, et al. SVM practical industrial application for mechanical faults diagnostic[J]. Expert Systems with Applications, 2011, 38(6): 6980-6984.

引证文献4

二级引证文献33

;
使用帮助 返回顶部