期刊文献+

具CTL免疫反应的HollingⅡ型HIV模型的稳定性分析

Stability Analysis of an HIV Infection Model with CTL Immune Response and HollingⅡ Functional Response
下载PDF
导出
摘要 考虑了一类具CTL免疫反应的HIV四维数学模型,研究了该模型无病毒平衡点、感染无免疫平衡点的全局渐近稳定性以及感染免疫平衡点的局部渐近稳定性.最后用数值模拟验证了理论结果. In this paper,a model of HIV infection model with CTL immune response and HollingⅡ functional response is considered.Then,the global asymptotic stability of the viral free equilibrium and the CTL-absent infection equilibrium are discussed in details.Furthermore,the local asymptotic stability of the CTL-present infection equilibrium is also discussed.Finally,some numerical simulations are given to support the obtained theoretical results.
出处 《南华大学学报(自然科学版)》 2011年第1期61-66,共6页 Journal of University of South China:Science and Technology
基金 国家自然科学基金资助项目(11071060) 湖南省科技厅基金资助项目(2010GK3013) 南华大学博士科研启动基金资助项目(5-XQD-2006-8) 南华大学留学回国人员科研启动基金资助项目(2007XQD14) 湖南省自然科学省市联合基金资助项目(11AF002B)
关键词 HIV模型 HollingⅡ功能反应函数 稳定性 免疫反应 HIV infection model Holling Ⅱ functional response stability immune response
  • 相关文献

参考文献13

二级参考文献36

  • 1闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 2李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 3Bangham R M. The immune response to HTLV-1 [J]. Current Opinion in Immunology, 2000, 12: 397-402.
  • 4Schmitz J E, Kuroda M J, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes [J]. Science, 1999,283: 857-860.
  • 5Nowak A, Bangham R M. Population dynamics of immune responses to persistent viruses[J]. Science, 1996, 272: 74-79.
  • 6Sato H, Orenstein J, Dimitrov D, et al. Cell-to-cell spread of HIV-I occurs with minutes and may not involve the participation of virus particles[J]. Virology, 1992, 186: 712-724.
  • 7Gummuluru S, Kinsey C M, Emerman M. An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virua[J]. J Virol, 2000, 74: 10882-10891.
  • 8Bonhoeffer S, Coffin J M, Nowak M A. Human immunodeficiency virus drug therapy and virus load [J]. J Virol, 1997,71 : 3275-3278.
  • 9Kuang Y. Delay differential equations with applications in population dynamics [M]. Boston:Academic Press, 1993:26-38.
  • 10Culshaw R V, Ruan S, Spiteri R J. Optimal HIV treatment by maximising immune response[J]. J Math Biol, 2004,48: 545-562.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部