期刊文献+

基于SIFT及射影变换的多摄像机目标交接 被引量:2

Object handoff in multi-cameras based on SIFT and homograph
下载PDF
导出
摘要 运动目标正确交接是多摄像机视频监控中的关键,视野分界线是解决目标交接的有效工具。不需标定摄像机参数,提出了一种利用尺度不变特征变换(SIFT:scale-invariant freatures transform)及射影变换实现目标交接的算法。首先使用SIFT算法在不同视角拍摄的图像间自动生成匹配的特征点,由空间共面的特征点及其相应匹配点生成图像间的单应变换矩阵。然后由图像边界点及单应矩阵计算摄像机视野(FOV:field of view)分界线。最后利用目标位置信息及射影变换实现目标正确交接。实验结果表明本文的方法具有有效性和鲁棒性。 To establish the correspondence between moving objects is a key problem in multi-camera surveillance,and field of view(FOV) line is an efficient tool to resolve the consistency in labeling objects.In this paper,we propose an algorithm that realizes object handoff by using scale-invariant features transform(SIFT) and homograph,without knowing the camera calibration information.Firstly,by using SIFT algorithm,matching points are automatically generated between two images sharing a joint region.We chose the matching points which are coplanar in space.These points are then used to compute the homography matrix of the two images.Then,the camera FOV lines are obtained by using the homography matrix and boundary points of the images.Finally,we realize the object handoff using the position of object and homograph.Experimental results show the accuracy and robustness of our method.
作者 杨俊 战荫伟
出处 《中国体视学与图像分析》 2011年第1期44-49,共6页 Chinese Journal of Stereology and Image Analysis
基金 周口师范学院青年科研基金(ZKNUQN201037A)
关键词 目标交接 多摄像机视频监控 FOV SIFT 射影变换 object handoff multi-camera surveillance FOV SIFT homograph
  • 相关文献

参考文献14

  • 1Utsumi A, Ohya J. Multiple-camera-based human tracking using non - synchronous observations [ C ]//Proceedings of Asian Conference on Computer Vision. Taipei: 2000 : 1034 - 1039.
  • 2Cai Q, Aggarwal J K. Tracking human motion in structured environments using a distributed - camera system [ J]. Pattern Analysis of Machine Intelligence, 1999, 21 (11) :1241 - 1247.
  • 3Chang T H, Gong S, Ong E J. Tracking multiple people under occlusion using multiple cameras [ C ] //Proceedings of BMVC. Bristol: 2000.
  • 4Kelly P, Katkere A, Kuramura D, et al. An architecture for multiple perspective interactive video [ C ]// Processing of the third ACM international conference on Multimedia. San Francisco: 1995 : 201 -212.
  • 5梁华,刘云辉,蔡宣平.基于三焦点张量点转移的多摄像机协同[J].软件学报,2009,20(9):2597-2606. 被引量:2
  • 6Velipasalar S, Wolf W. Recovering field of view lines by using invafiants [ C ]//Proceeding of 2004 International Conference on Image Processing (ICIP). 2004:3069 - 3072.
  • 7Khan S, Shah M. Consistent labeling of tracked objects in multiple cameras with overlapping fields of view [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10) :1355 - 1360.
  • 8Lowe D G. Distinctive image features from scale -invariant keypoints[ J]. International Journal of Computer Vision, 2004,60(2) : 91 - 110.
  • 9Lowe D G. Object recognition from local scale - invariant features [ C ]//Proceeding of International Conference on Computer Vision. Corfu : 1999 : 1150 - 1157.
  • 10Hartley R, Zisserman A. Muhiple View Geometry in Computer Vision [ M ]. 2^nd ed. London: Cambridge University Press, 2006.

二级参考文献4

共引文献1

同被引文献21

  • 1牛恩国,程咏梅,潘泉,赵春晖,杨涛.多摄像机视野分界线快速自动生成算法[J].计算机应用研究,2007,24(3):297-299. 被引量:6
  • 2CUI Y,WENG J. Hand segmentation using learning-based prediction and verification for hand sign recognition[A].Washington,DC:IEEE Computer Society,1997.88-93.
  • 3HU Wei-ming,HU Min,ZHOU Xue. Principal axis-based correspondence between multiple cameras for people tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,(04):663-671.
  • 4LEE L,ROMANO R,STEIN G. Monitoring activities from multiple video streams:establishing a common coordinate frame[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,(08):758-768.
  • 5STARK M,SCHIELE B. How good are local features for classes of geometric objects[A].2007.1-8.
  • 6COMANICIU D,RAMESH V,MEER P. Real-time tracking of nonrigid objects using mean shift[A].2000.142-149.
  • 7WE G,PETRUSH V,GERSHMAN A. Multiple-camera people localization in a cluttered environment[A].2004.52-60.
  • 8UTSUMI A,TETSUTANI N. Human tracking using multiple-camera based hcad appearance modeling[A].2004.657-662.
  • 9HANS K,SHAH M. Consistent labeling of tracked objects in multiple cameras with overlapping fields of view[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(10):1355-1360.
  • 10KELLY P,KATKERE A,KURAMURA D. An architecture for multiple perspective interactive video[A].1995.201-212.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部