期刊文献+

改进的数据流频繁闭项集挖掘算法 被引量:5

Improved Mining Algorithm for Frequent Closed Itemsets of Data Stream
下载PDF
导出
摘要 为提高数据流频繁闭项集的查找效率,提出一种改进的NewMoment频繁闭项集挖掘算法,通过在LevelCET数据结构中加入层次结点,并利用层次检测策略与最佳频繁闭项集检测策略快速挖掘数据流滑动窗口中所有的频繁闭项集。实验结果证明,与NewMoment算法相比,改进的算法性能更优。 In order to improve search efficiency of data stream frequent closed itemsets,this paper proposes an improved NewMoment algorithm to mine frequent closed itemsets over data streams.By adding level node in LevelCET data structure and using level checking strategy and optimum frequent closed items,it can quickly tap all the frequent closed itemsets over data streams.Expertimental results show the improved algorithm is better than NewMoment.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第9期75-77,共3页 Computer Engineering
基金 湖南省教育厅优秀青年科研基金资助项目(08B040)
关键词 数据流 频繁闭项集 滑动窗口 NewMoment算法 LevelCET数据结构 data stream frequent closed itemset sliding window NewMoment algorithm LevelCET data structure
  • 引文网络
  • 相关文献

参考文献5

  • 1袁正午,袁松彪.基于时空划分的数据流挖掘[J].计算机工程,2010,36(7):61-62. 被引量:4
  • 2Teng Weiguang,Chen Ming-Syan,Yu Philip.A Regression-based Temporal Pattern Mining Scheme for Datastreams[C]//Proc.of the 29th International Conference on Very Large Databases.Berlin,Germany:Morgan Kaufmann,2003.
  • 3Chang Joong-Hyuk,Lee Won-Suk.A Sliding Window Method for Finding Recent Frequent Itemsets over Data Stream[J].Journal of Information Science and Engineering,2004,20(4):753-762.
  • 4Chi Yun,Wang Haixun,Yu Philip,et al.MOMENT:Maintaining Closed Frequent Itemsets over a Stream Sliding Window[C]//Proc.of the 4th IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2004:59-66.
  • 5Li Huafu,Ho Chin-Chuan,Lee Suh-Yin,Incremental Updates of Closed Frequent Itemsets over Continuous Data Streams[J].Expert Systems with Applications,2009,36(2):2451-2458.

二级参考文献5

  • 1Han Jiawci,Kamber M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2007.
  • 2Aggarwal C, Han Jiawei, Wang Jianyong. A Framework for Clustering Evolving Data Streams[C]//Proc. of the 29th International Conference on Very Large Data Bases. Berlin, Germany: [s. n.], 2003.
  • 3Yang Qiang, Wu Xindong. 10 Challenging Problems in Data Mining Research[J]. International Journal of Information Technology & Decision Making, 2006. 5(4): 597-604.
  • 4Sun Huanliang, Yu Ge, Bao Yubin, et al. CDS-Tree: An Effective Index tbr Clustering Arbitrary Shapes in Data Stream[C]//Proc. of the 15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications. Washington, USA: IEEE Computer Society, 2005:81-88.
  • 5Parsons L, Haquc E, Liu Huan. Subspace Clustering for High Dimensional Data: A Review[J]. ACM SIGKDD Explorations Newsletter Archive, 2004, 6( 1 ): 90-105.

共引文献3

同被引文献77

  • 1刘殷雷,刘玉葆,陈程.不确定性数据流上频繁项集挖掘的有效算法[J].计算机研究与发展,2011,48(S3):1-7. 被引量:14
  • 2刘学军,徐宏炳,董逸生,钱江波,王永利.基于滑动窗口的数据流闭合频繁模式的挖掘[J].计算机研究与发展,2006,43(10):1738-1743. 被引量:26
  • 3谢洁锐,胡月明,刘才兴,刘兰.无线传感器网络的时间同步技术[J].计算机工程与设计,2007,28(1):76-77. 被引量:9
  • 4Domingos P,Hulten G.Mining High-speed Data Streams[C] //Proc.of the 6th International Conference on Knowledge Discovery and Data Mining.New York,USA:[s.n.] ,2000.
  • 5Hulten G,Spencer L,Domingos P.Mining Time-changing Data Streams[C] //Proc.of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.[S.l.] :IEEE Press,2001.
  • 6Street W H,Kim Y S.A Streaming Ensemble Algorithm for Large-scale Classification[C] //Proc.of the 2005 ACM Sympo-sium on Applied Computing.[S.l.] :IEEE Press,2005.
  • 7Wang Haixun,Fan Wei,Philip S Y,et al.Mining Concept Drifting Data Streams Using Ensemble Classifiers[C] //Proc.of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington D.C.,USA:[s.n.] ,2003.
  • 8Kolter J Z.Dynamic Weighted Majority:An Ensemble Method for Drifting Concepts[EB/OL].(2007-01-12).http://dl.acm.org/citation.cfm?id=1390333.
  • 9王永恒,杨树强,贾焰.海量文本数据库中的高效并行频繁项集挖掘方法[J].计算机工程与科学,2007,29(9):110-113. 被引量:2
  • 10Jin Che-Qing, Yi Ke,Chen Lei,Yu Xu,LinXue Min. Slieling Window Top-K Queries on Uncertain Stream. Proceedings of the VLDB Endowment, 2008, 1(1):301-312.

引证文献5

二级引证文献5

;
使用帮助 返回顶部