期刊文献+

Development of X-FEM methodology and study on mixed-mode crack propagation 被引量:10

Development of X-FEM methodology and study on mixed-mode crack propagation
下载PDF
导出
摘要 The extended finite element method(X-FEM) is a novel numerical methodology with a great potential for using in multi-scale computation and multi-phase coupling problems. The algorithm is discussed and a program is developed based on X-FEM for simulating mixed-mode crack propagation. The maximum circumferential stress criterion and interaction integral are deduced. Some numerical results are compared with the experimental data to prove the capability and efficiency of the algorithm and the program. Numerical analyses of sub-interfacial crack growth in bi-materials give a clear description of the effiect on fracture made by interface and loading condition. The extended finite element method(X-FEM) is a novel numerical methodology with a great potential for using in multi-scale computation and multi-phase coupling problems. The algorithm is discussed and a program is developed based on X-FEM for simulating mixed-mode crack propagation. The maximum circumferential stress criterion and interaction integral are deduced. Some numerical results are compared with the experimental data to prove the capability and efficiency of the algorithm and the program. Numerical analyses of sub-interfacial crack growth in bi-materials give a clear description of the effiect on fracture made by interface and loading condition.
机构地区 School of Aerospace
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期406-415,共10页 力学学报(英文版)
关键词 X-FEM - Mixed-mode fracture . Bi-material Sub-interfacial crack X-FEM - Mixed-mode fracture . Bi-material Sub-interfacial crack
  • 相关文献

参考文献2

二级参考文献28

  • 1李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 2方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64
  • 3匡震邦 马法尚.裂纹端部场[M].西安:西安交通大学出版社,2002..
  • 4Belytschko T, Lu Y Y, Gu L, Element-free Galerkin method [J]. Int J Numer Mech Engng, 1994,37(2) : 229-256.
  • 5Belytschko T, Black T, Elastic crack growth in finite element with minimal remeshing [J]. Int J Numer Meth Engng, 1999, 45 (5): 601-620.
  • 6Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. Int J Numer Meth Engng, 1999,46(1): 131-150.
  • 7Babuska I, Melenk J M. The partition of unity method [J]. Int J Numer Meth Engng, 1997,40(4) :727- 758.
  • 8Melenk J M, Babuska I. The partition of unity method: basic theory and applications [J]. Comp Meth Appl Meeh Enging, 1996,139(1-4) : 289-314.
  • 9Fleming M, Chu Y A, Moran B, et al. Enriched element-free Galerkin methods for crack tip fields [J]. Int J Numer Meth Engng, 1997,40(8) : 1483-1504.
  • 10Liu X Y, Xiao Q Z, Karihaloo B L. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials [J]. Int J Numer Meth Engng, 2004, 59 (8): 1103-1118.

共引文献66

同被引文献122

引证文献10

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部