期刊文献+

连续小推力航天器的深空探测轨道优化方法综述 被引量:41

SURVEY OF LOW-THRUST TRAJECTORY OPTIMIZATION METHODS FOR DEEP SPACE EXPLORATION
下载PDF
导出
摘要 连续小推力作用下航天器的深空探测轨道的优化设计是一个存在大量局部最优解的全局优化问题.轨道设计流程总体上分为全局优化和局部优化.全局优化为粗略设计,通常在对航天器受连续推力作用下的轨道作近似处理的前提下大致确定探测序列和时间节点.局部优化方法可分为直接法、间接法和混合法.直接法是将连续的问题离散成一个参数优化问题.间接法是求解由变分法和极大值原理推导的满足一阶最优必要条件的两点或多点边值问题.混合法利用间接法推导的方程,再离散后优化求解.本文综述当前轨道优化设计领域最新和最常用的方法,分析各种方法的优缺点. Low-thrust optimization and design of spacecraft trajectory for deep space exploration is a global optimization problem with large numbers of local solutions.The strategy of trajectory design consists of global optimization and local optimization as a whole.As a concept design,the goal of global optimization is to approximately determine exploration sequences and node times after simplifying spacecraft trajectory generated by low thrust.Local optimization is generally cataloged as direct methods,indirect methods,and hybrid methods.Direct methods convert the continuous optimal control problem into a parameter optimization problem through discretization.Indirect methods are involved in solving two- or multi-point boundary-value problems satisfying the first-order necessary conditions derived from the calculus of variations and the maximum principle.Hybrid methods partly utilize the conditions derived by indirect methods,and then as what direct methods do,resort to parameter optimization.This paper surveys the state of the art in low-thrust trajectory optimization,and describes the benefits and deficiencies of the newest and most popular methods.
出处 《力学与实践》 CSCD 北大核心 2011年第3期1-6,共6页 Mechanics in Engineering
基金 国家自然科学基金(10832004) 中国博士后科学基金(20100470131)资助项目
关键词 小推力 全局优化 局部优化 间接法 low-thrust global optimization local optimization indirect methods
  • 相关文献

参考文献4

二级参考文献22

  • 1李俊峰,宝音贺西.深空探测中的动力学与控制[J].力学与实践,2007,29(4):1-8. 被引量:30
  • 2Izzo D. 1st ACT Global Trajectory Optimisation competition: Problem description and summary of the results. Acta Astronautica, 2007, 61(9): 731-734.
  • 3Petropoulos AE. 2nd JPL Global Trajectory Optimisation competition: Problem description and summary of the resuits. Workshop on Methods and Results Sedona, Arizona, USA, 01 February 2007.
  • 4Izzo D, Becerra VM, Myatt DR, et al. Search space pruning and global optimization of multiple gravity assist spacecraft trajectories. Journal of Global Optimization, 2007, 38:283-296.
  • 5Casalino L, Colasurdo G, et al. Optimal low-thrust escape trajectories using gravity assist. Journal of Guidance, Control and Dynamics, 1999, 22(5): 637-642.
  • 6Casalino L, Colasurdo G, et al. Optimal of AV earth- gravity-assist trajectories. Journal of Guidance, Control and Dynamics, 1998, 21(6): 991-995.
  • 7Petropoulos AE, Kowalkowski TD, et al. 1st global trsjectory optimization competition results found at jet propulsion laboratory. Acta Astronautica, 2007, 61(9): 806-815.
  • 8Casalino L, Colasurdo G, et al. 1st global trsjectory opotimization competition results found at the politecnico of turin. Acta Astronautica, 2007, 61(9): 769-774.
  • 9Kennedy K, Eberhart R. Particle Swarm Optimization. IEEE Int Conf. Neural Networks. Perth, Australia, 1995, 4:1942-1948.
  • 10Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11:341-359.

共引文献26

同被引文献313

引证文献41

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部