期刊文献+

自适应平方根Unscented粒子滤波算法研究 被引量:2

Proposing Adaptive Square Root Unscented Particle Filtering(ASRUPF) Algorithm
下载PDF
导出
摘要 针对粒子滤波存在的重要性密度函数难以选取和可能出现粒子退化的问题,在吸收平方根滤波、自适应滤波和粒子滤波优点的基础上,提出了一种新的UPF算法。该算法由UKF算法得到重要性密度函数,通过自适应因子实时控制动力学模型误差,采用平方根分解法抑制系统状态协方差矩阵的负定性。仿真结果证明,文中所提出的自适应平方根UPF算法,不但适用于非线性、非高斯动态系统的滤波计算,而且能有效地改善滤波性能,提高SINS/SAR组合导航系统的定位精度。 Aim. The introduction of the full paper reviews a number of papers in the open literature, points out what we believe to be their shortcomings, and then proposes our ASRUPF algorithm, which is explained in section 1. Its core consists of: ( 1 ) we obtain the importance density function with the unscented Kalman filtering (UKF) algorithm; (2) we correct the system dynamic error in real time by using the adaptive factor; (3) we enhance the numerical stability of state covariance matrix with the square root decomposition method. Section 2 simulates our ASRUPF algorithm by applying the unscented particle filtering (UPF) algorithm and our ASRUPF algorithm respectively to a strapdown inertial navigation system/synthetic aperture radar (SINS/SAR) integrated navigation system; the simulation results, given in Figs. 1 and 2, and their comparison plus other analysis demonstrate preliminarily that our ASRUPF algorithm is suitable for non-linear and non-Gaussian system filtering and can effectively enhance the positioning accuracy of the SINS/SAR integrated navigation system.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第3期460-464,共5页 Journal of Northwestern Polytechnical University
基金 航空科学基金(20080818004) 陕西省自然科学基金(SJ08F04)资助
关键词 卡尔曼滤波 MONTE CARLO方法 unscented粒子滤波 UNSCENTED卡尔曼滤波 自适应平方根UPF algorithms, Kalman filtering, Monte Carlo methods, unscented particle filtering (UPF), unscented Kalman filtering (UKF), adaptive square root unscented particle filtering (ASRUPF) algorithm
  • 相关文献

参考文献8

二级参考文献94

共引文献394

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部