期刊文献+

一种组合核支持向量机建模的方案 被引量:4

Approach of combined-kernel support vector machines
下载PDF
导出
摘要 针对组合核支持向量机建模中存在的耗时和性能的矛盾问题,提出新的方案,用于在时间和性能上寻找理想折衷。研究了兼顾学习和推广能力的核组合,以及优化核参数方法。提出了一种主从核逐步优化的方案,即每次只优化一个核的核参数,逐步加入其他子核求解参数,时间上大致是求解单核参数耗时的简单叠加,相对于进化算法求解模型耗时更少,相对于分治算法求解模型性能更优。提出的方案在时间和性能上取得了较好的效果。 For the contradiction between time and performance in the modeling of combined-kernel support vector machines, it proposes a new scheme in finding the ideal compromise of performance and time.Kernels’combination is studied beneficial for learning and generalization ability,as well as the method of optimizing kernels’parameters.A master-slave kernel phase-optimized programs is proposed,namely a time optimizes parameters of one kernel,and gradually adds other sub-kernel. Time cost is the simple sum of time every single-kernel modeling consumed.Compared with the evolutionary algorithm,time consumed is less,and compared with the partition algorithm,the performance is better.The proposed scheme in terms of time and performance achieves good results.
出处 《计算机工程与应用》 CAS CSCD 北大核心 2011年第19期35-38,共4页 Computer Engineering and Applications
关键词 FISHER准则 组合核 多核 核参数 支持向量机 Fisher combined kernel multi-kernel kernel parameters support vector machines
  • 相关文献

参考文献18

  • 1Dioisan L,Oltean M,Rogozan A, et al.lmproving SVM perfor- mance using a linear combination of kemels[C]//LNCS 4432:In- ternational Conference on Adaptive and Natural Computing Al- gorithms, Warsaw, Poland, 2007 : 218-227.
  • 2Huang M, Zhu Xiaoyan.Combining convolution kernels defined on heterogeneous sub-structures[C]//Proceedings of the llth Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.Berlin,Heidelberg:Springer,2005 : 1017-1026.
  • 3Dioian L,Rogozan A,P6cuchet J EEvolutionary optimisation of kernel and hyper-parameters for SVM[C]//Modelling, Computa- tion and Optimization in Information System and Management Science, MCO' 08, Metz, France, 2008 : 107-116.
  • 4Lee W J, Verzakov S, Duin R P W.Kernel combination versus classifier combination[C]//LNCS 4472: Proceedings 7th Interna- tional Conference on Multiple Classifier Systems, MCS 2007, Prague.[S.l.] : Springer Verlag, 2007: 22-31.
  • 5Nguyen H N, Ohn S Y, Park J, et al.Combined kernel function approach in SVM for diagnosis of cancer[C]//LNCS 4293:Ad- vance in Artificial Intelligence, 2006: 532-542.
  • 6Ohn S Y,Nguyen H N,Chi S D.Evolutionary parameter estima- tion algorithm for combined kernel function in support vector machine[C]//LNCS 3309:Content Computing,2004..481-486.
  • 7Nguyen H N, Ohn S Y, Choi W J.Combined kernel function for support vector machine and learning method based on evo- lutionary algorithm[C]//LNCS 3316:Neural Information Process- ing, 2004:1273-1278.
  • 8Chen Zhen, Li vector machine extraction from cial Intelligence Jianping, Wei Liwei.A multiple kernel support scheme for feature selection selection and rule gene expression data of cancer tissue[J].Artifi- in Medicine, 2007,41 (2) : 161-175.
  • 9郑小霞,钱锋.高斯核支持向量机分类和模型参数选择研究[J].计算机工程与应用,2006,42(1):77-79. 被引量:39
  • 10周洪利,刘培玉.支持向量机中的模型选择研究[J].信息技术与信息化,2006(6):62-63. 被引量:4

二级参考文献66

共引文献358

同被引文献46

  • 1沈雷,沈备军.敏捷方法的研究与实践[J].计算机工程,2005,31(7):219-222. 被引量:15
  • 2张敏,袁兆山,李玲.基于敏捷方法和RUP的软件过程改进[J].合肥工业大学学报(自然科学版),2007,30(4):440-444. 被引量:7
  • 3赵剑冬,林健.敏捷方法在软件项目开发中的实践[J].计算机工程与设计,2007,28(12):2772-2774. 被引量:7
  • 4PRESSMAN R S.软件工程[M].北京:机械工业出版社,2007.
  • 5Shelton C. Agile and CMMI : better together [ EB/OL ]. 2008. 07-09. http://www, scrumalliance, org/articles/lOO-agile- and-cmmi-better-together.
  • 6Pikkarainen M, Mantyniemi A. An approach for using CMM[ in agile software development assessments:experiences from three cases studies [ C ]//Proc of software process improve- ment and capability determination 2006 conference. Luxem- burg: [s. n. ] ,2006.
  • 7Diaz J, Garbajosa J, Calvo-Manzano J A. Mapping CMMI level 2 to Scrum practices:an experience report[ C ]//Proc of Euro- pean system and software process improvement and innovation conference. [s. 1. ]: Is. n. ] ,2009:93-104.
  • 8Jakobsen C R,Sutherland J. Scrum and CMMI going from good to great[ C]//Proc of 2009 agile conference. Chicago, IL: IEEE ,2009:333-337.
  • 9CMMI Product Team. CMMI for development, version 1.2 [ M ]. Pittsburgh:Carnegie Mellon University Software Engi- neering Institute ,2006.
  • 10Elshafey L A,Galal-Edeen G H. Combining CMMI and agile methods [ C ]//Proc of insulating films on semiconductors con- ference. [s. 1. ]:[s. n. ] ,2008:27-39.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部