期刊文献+

模糊联想记忆对训练模式对摄动的鲁棒性研究

Robustness research of fuzzy associative memories with perturbation of training pattern pairs
下载PDF
导出
摘要 基于模糊取大算子(V)和T-模的模糊合成,构建了一类模糊联想记忆网络(V-T FAM)。利用T-模的模糊蕴涵算子,给出了这类V-T FAM的学习算法。针对训练模式对小幅摄动可能对模糊神经网络的性能产生副作用,提出V-T FAM对训练模式对摄动的鲁棒性概念。理论研究表明,当T-模满足Lipschitz条件时,采用上述学习算法的V-TFAM对训练模式对摄动幅度,在系数为β的条件下全局拥有好的鲁棒性。最后用V-T FAM在图像联想方面的实验验证了理论结果。 This paper sets up a class of fuzzy associative memories based on the fuzzy composition of max operation(V) and T-Norms,so be called V-T FAM(Fuzzy Associative Memory).With the fuzzy implication operator of T-Norms,a general learning algorithm is proposed for a class of such V-T FAMs.Since small perturbations of training pattern pairs may cause some disadvantages to performance of a fuzzy neural network,a new concept is established for the robustness of V-T FAMs to perturbations of training pattern pairs.The theoretical researches show that when T-Norms satisfy Lipschitz condition,V-T FAMs have good robustness under the condition of the perturbation factor of β of training pattern pairs by the proposed learning algorithm.Finally,the experiment with which the V-T FAM associated an image with another image is given to testify the theoretical results.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第19期211-213,共3页 Computer Engineering and Applications
基金 国家教育部重点科研基金No.208098 湖南省教育厅重点科研基金(No.07A056)~~
关键词 模糊联想记忆网络 训练模式对 T-模 摄动 鲁棒性 fuzzy associative memories training pattern pairs T-Norms perturbation robustness
  • 相关文献

参考文献12

  • 1舒桂清,肖平.模糊联想记忆网络的增强学习算法[J].中国图象图形学报,2003,9(1):87-93. 被引量:8
  • 2Rigatos G G, Tzafestas S G.Quantum learning for neural associa- tive memories[J].Fuzzy Sets and Systems,2006,157(13):1797-1813.
  • 3Syedali M, Balasubramaniam EExponentiai stability of uncer- tain stochastic fuzzy BAM neural networks with time-varying delays[J].Neurocomputing, 2009,72 (4) : 1347-1354.
  • 4Wan L, Zhou Q.Convergence analysis of stochastic hybrid bidi- rectional associative memory neural networks with delays[J].Phys- ics Letters A,2007,370(5) :423-432.
  • 5Ritter G X,Urcid G,Schrnalz M S.Autonomous single-pass end- member approximation using lattice auto-associative memories[J]. Neurocomputing, 2009,72 (10) :2101-2110.
  • 6Zhang L, Cai K.Optimal fuzzy reasoning and its robustness analysis[J].International Journal of Intelligent Systems, 2004, 19: 1033-1049.
  • 7Li Y,Li D,Pedycz W,et al.An approach to measure the robust- ness of fuzzy reasoning[J].Intemational Journal of Intelligent Sys- tems, 2005,20: 393-413.
  • 8Ying M.Perturbation of fuzzy reasoning[J].IEEE Transactions on Fuzzy Systems, 1999,7 (5) : 625-629.
  • 9徐蔚鸿,陈国平,杨静宇,叶有培.规则摄动时模糊蕴涵算子对模糊推理的鲁棒性的影响[J].计算机学报,2005,28(10):1700-1707. 被引量:16
  • 10徐蔚鸿,宋鸾姣,李爱华,杨静宇.训练模式对的摄动对模糊双向联想记忆网络的影响及其控制[J].计算机学报,2006,29(2):337-344. 被引量:17

二级参考文献60

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部