期刊文献+

一种新的全局嵌入降维算法 被引量:14

A New Global Embedding Algorithm
下载PDF
导出
摘要 目前大多数流形学习算法都以距离来度量数据间的相似度,并取得满意的效果,但都难以处理噪音造成的子空间偏离.针对此问题,提出了一种基于角度优化的全局降维算法.通过给出多样本增量的协方差阵更新方式,从理论上证明了中心化样本长度与其偏离低维空间角度为子空间偏离的主要因素,进而解决了噪音造成的子空间偏离问题.同时,与主成分分析相比,能够更好地与其他算法融合解决小样本问题.实验证实了该算法在手工和真实数据集上的有效性. Recently, most manifold learning algorithms take advantage of distance to measure similarity of data, and obtain satisfactory results, but most of them can not handle subspace deviation caused by noise. To solve this problem, a global dimensionality reduction algorithm based on angle optimization is proposed in this paper. Theoretically it proves that the main factors of subspace deviation are the length of the center sample and the angle of deviation from the lowdimensional space by providing covariance matrix update mode of multi-sample incremental. Consequently, the algorithm solves the subspace deviation problem caused by noise. Compared with the principal component analysis, it can integrate better with other algorithms to solve small sample problems. Experiments carried out on handwork and real data sets show a clear improvement over the results of other linear algorithms.
出处 《自动化学报》 EI CSCD 北大核心 2011年第7期828-835,共8页 Acta Automatica Sinica
基金 中国科学院自动化研究所复杂系统与智能科学重点实验室开放课题基金(20070101) 辽宁省教育厅高等学校科学研究基金(2008344)~~
关键词 全局嵌入 不规则M数据 角度 正交投影 Global embedding anomalistic M data angle orthogonal projection
  • 相关文献

参考文献21

  • 1Jolliffe I T. Principal Component Analysis (Second Edition). New York: Springer-Verlag, 2002.
  • 2Cox T F, Cox M A A. Multidimensional Scaling. London: Chapman and Hall, 1994.
  • 3Rowels S T, Saul L K. Nonlinear dimensionality reduc- tion by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 4Donoho D L, Grimes C. Hessian eigeamaps: locally linear embedding, techniques for high-dimensional data. Proceed- ings of the National Academy of Sciences, 2003, 100(10): 5591-5596.
  • 5Min W L, Lu K, He X F. Locality pursuit embedding. Pat- tern Recognition, 2004, 37(4): 781-788.
  • 6Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientitic Computing, 2004, 26(1): 313-338.
  • 7杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 8Yang L. Alignment of overlapping locally scaled patches for multidimensional sealing and dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2008, 30(3): 438-450.
  • 9Wang J, Zhang Z Y, Zha H Y. Adaptive manifold learning. In: Proceedings of the Neural Information Processing Sys- tems. Vancouver, Canada: The MIT Press, 2004. 1473-1480.
  • 10Tenenbaum J B, De S V, Langford J C. A global geometric framework for nonlinear dimension reduction. Science, 2000, 290(5500): 2319-2323.

二级参考文献32

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 3梁栋,杨杰,卢进军,常宇畴.基于非负矩阵分解的隐含语义图像检索[J].上海交通大学学报,2006,40(5):787-790. 被引量:7
  • 4Chatterjee C, Kung Z, Roychowdhury V P. Algorithms for accelerated convergence of adaptive PCA. IEEE Transactions on Neural Networks, 2000, 11(2): 338-355.
  • 5Cao L J, Chua K S, Chong W K, Lee H P, Gu Q M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55(1-2): 321-336.
  • 6Belhumeur P N, Hespanha J P, Kriegman D J. Eigenface vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 7Swets D L, Weng J J. Using discriminant eigenfeature for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
  • 8Yang J, Zhang D, Prangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
  • 9Zhang D Q, Zhou Z H. (2D)2PCA: 2-directioned 2- dimensioned PCA for efficient face representation and recognition. Neurocomputing, 2005, 69(1-3): 224-231.
  • 10Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532.

共引文献68

同被引文献90

引证文献14

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部