期刊文献+

情感语音特征对语料库依赖性的统计分析 被引量:3

Statistical Analysis for Database Dependence in Classification of Emotional Speech by using Different Features Extraction Approaches
下载PDF
导出
摘要 简述线性预测倒谱系数(LPCC)、Teager能量算子(TEO)、梅尔频率倒谱系数(MFCC)和过零峰值幅度(ZCPA)特征提取方法,并将这四种方法应用于情感识别。设计两种实验,第一种是使用TYUT和Berlin语料库的单语言实验,这种实验证明,以上四种特征在单一的语料库单一语言条件下均能够有效地表征语音的情感特征,其中MFCC特征对情感的识别率最高。第二种实验是混合语料库的单一语言实验。之前大多数关于情感特征的研究都是基于某一种语料库中某种特定语言的,但在实际中,说话人的背景环境总是多种多样。因此,对特征的混合语料库研究是有现实意义的。第二种实验证明这四种特征都是语料库依赖性的,其中ZCPA特征的识别率下降最少。 Four approaches of feature extraction: the Linear Predictive Cepstral Coefficient (LPCC), the Teager Energy Operator (TEO), the Mel-Frequency Cepstral Coefficient (MFCC) and the Zero Crossings with Peak Amplitudes (ZCPA) are described in this paper. And these approaches are applied to emotional speech recognition. Two kinds of experiments are carded out. The first one is a kind of single language experiments with TYUT database and Berlin database. Its results show that these four approaches can represent speech emotion effectively by using single language of single database. MFCC has the best result of the four approaches. The second kind experiment is merge-database of single language. Most previous work on emotional feature extraction is based on a special language of single speech database. But in practice, the environment of the speaker is various. So the study of emotional feature extraction based on merge-database is signifieative. Experiments of the second kind indicate that the four features are all database dependent. ZCPA features are of the least database dependence of the four approaches.
作者 孙颖 张雪英
出处 《噪声与振动控制》 CSCD 北大核心 2011年第4期132-136,共5页 Noise and Vibration Control
基金 国家自然科学基金(No.61072087) 山西省自然科学基金(No.2010011020-1) 山西省研究生创新基金(No.20093010)
关键词 声学 信号处理 情感语音识别 语料库依赖性 情感特征 混合语料库 acoustics signal analysis emotional speech recognition database dependence emotional features merge-database
  • 相关文献

参考文献11

  • 1Dimitrio Ververillis, Constantine Kotropoulos. Emotional speech recognition: resources, features, and methods [J]. Spoooh Cornmunitation, 2006, 48:1162-1181.
  • 2罗跃嘉,吴健辉.情绪的心理控制与认知研究策略[J].西南师范大学学报(人文社会科学版),2005,31(2):26-29. 被引量:24
  • 3刘丽媛,严家明.一种孤立词语音识别的实现方法及改进[J].现代电子技术,2010,33(16):109-112. 被引量:3
  • 4袁正午,肖旺辉.改进的混合MFCC语音识别算法研究[J].计算机工程与应用,2009,45(33):108-110. 被引量:18
  • 5Doh-suk Kim, Soo-Yong Lee, maee M. Kil. Auditory processing of speech signal for robust speech recognition in real-world noisy envirroments [J]. IEEE Trasnsaotions Speoch andAuflio Processing, 1999,7(1) :55-58.
  • 6Ying Sun, Xueying Zhang. A Study of Zero-Crossings with Peak-Amplitudes in Speech Emotion Classification [C]. The First International Conference on Pervasive Computing, Signal Processing and Applications, Harbin, China, Sep. 17-19, 20101 328 - 331.
  • 7焦志平,张雪英,赵姝彦.一种基于听觉模型的抗噪语音识别特征提取方法[J].太原理工大学学报,2005,36(1):13-15. 被引量:8
  • 8He L, Lech M, Maddage N, Allen N. Emotion recognition in speech of parents of depressed adolescents [C]. Proceedings of the Third International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2009). Beijing, China, June 11-13, 2009, 1-4.
  • 9F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, B. Weiss. A database of German emotional speech [J]. Proe. Interspeech, 2005: 1517-1520.
  • 10W. M. Chmpbell, J. P. CampeU, D.A. Reynolds, E. Singer, P.A. Torres-Carrasquillo.. Support vector machines for speaker and language recognition [J]. Computex Speech and Language, 2006, 20: 210-229.

二级参考文献34

  • 1黄宇霞,罗跃嘉.国际情绪图片系统在中国的试用研究[J].中国心理卫生杂志,2004,18(9):631-634. 被引量:99
  • 2叶庆云,蒋佳.基于语音MFCC特征的改进算法[J].武汉理工大学学报,2007,29(5):150-152. 被引量:9
  • 3Sandipan C,Anindya R,Sourav M,et al.Capturing complementary information via reversed filter bank and parallel implementation with MFCC for improved text-independent speaker identification[C]// IEEE International Conference on Computing:Theory and Application, India, 2007 : 463-467.
  • 4GERVEN S,XIE FEI.A comparative study of speech detection method[C].EUROSPEECH,Greece,1997:1015-1020.
  • 5GU H,TSENG C,LEE L.Isolated-utterance speech recognition using hidden markov models with bounded states durations[J].IEEE Transaction on SP,l991,39(8):1743-1752.
  • 6易出克,田斌,付强.语音信号处理[M].北京:国防工业出版社,2003.
  • 7韩利竹,王华.Matlab 电子仿真与应用[M].北京:国防工业出版社,2007.
  • 8SILVERMAN H F,PMORGAN D.The application of dynamic programming to connected speech recognition[J].IEEE Assp Mag.,1990,17(7):6-25.
  • 9Levenson R W. The Nature of Emotions[M]. New York: Oxford University Press, 1994, 123-126.
  • 10Ekman P. An argument for basic emotions[J]. Cognition and Emotion, 1992b,6:169-200.

共引文献49

同被引文献42

  • 1CHIAVERINI S,SICILIANO B, VILLANI L. A survey of robot interaction control schemes with experimental com- parison [ J ]. IEEE/ASME Trans. Mechatronics, 1999, 4(3) :273-285.
  • 2GASSERT R, MOSER R, BURDET E, et ah MRI/fMRI- compatible robotic system with force feedback for interac- tion with human motion [ J ]. IEEE/ASME Trans. Mecha- tronics, 2006,11 (2) :216-224.
  • 3KULJI B ,JANOS S ,TIBOR S. Mobile robot controlled by voice [C ]. International Symposium on Intelligent Systems and Informatics ,2007:89-192.
  • 4LIU P X,CHAN A D C,CHEN R, et al. Voice based ro- bot control [ C ]. International Conference on Information Acquisition. 2005:543-547.
  • 5JEAN J H, HSIEH M J, LIN Z. Development of a house- keeping robot with visual servoing capabilities [ C ]. IC- CAS-SICE,2009:712-716.
  • 6BUDIHARTO W, JAZIDIE A, PURWANTO D. Indoor navigation using adaptive neuro fuzzy controller for serv- ant robot[ C ]. International Conference on Computer En- gineering and Applications (ICCEA) ,2010:582-586.
  • 7TI-I/ANG D W. Limited speech recognition for controlling movement of mobile robot implemented on ATmega162 mi- crocontmller[ C]. International Conference on Computer and Automation Engineering (ICCAE) ,2009:347-350.
  • 8WEIGAND E. Emotions:The simple and the complex[ M].Amsterdam/Philadelphia:John Benjamins Publishing Com- pany ,2004.
  • 9MURRAY I R, ARNOTr J L. Toward the simulation of emotion in synthetic speech:a review of the literature on human vocal emotion[ J]. Journal of the Acoustical Society of America, 1993,93 (2) : 1097-1108.
  • 10GUYON I, GUNN S,NIKRAVESH M,et al. Feature extrac- tion, foundations and applications [ M ]. Springer,2006.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部