期刊文献+

一种基于多时间粒度的实时客流查询优化算法

An Optimization Algorithm of Real-time Customer-counting Query Based on Multiple Time Granularities
下载PDF
导出
摘要 随时间实时变化的客流数据属于时间序列数据,本文根据客流数据的接收频率,应用关系模型实现客流数据的存储建模;为了减弱数据采集频率对实时客流查询效率的影响,建立多时间粒度的客流视图,可提高实时客流查询的计算效率。 The real-time flow of customer data changed with time is classified as the time series.According to the receiving frequency,the relational model is applied for the storage of the customer data.In order to weaken the influence of the query efficiency of the real-time customer-counting by the receiving frequency,the views of the customer data with multiple time granularities are established and the query efficiency is improved.
作者 苏礼楷
出处 《计算机与现代化》 2011年第8期149-152,共4页 Computer and Modernization
关键词 多时间粒度 时间序列 查询优化 multiple time granularities time series query optimization
  • 相关文献

参考文献14

  • 1Agrawal R,Faloutsos C ,Swami A. Efficient similarity search in sequence databases [ C ]//Proceedings of the 4th International Conference on Foundations of Data Organization and Algo- rithms. Chicago,Illinois, USA :Springer-Verlag, 1993:69-84.
  • 2Kamel I, Faloutsos C. Hilbert R-tree:An improved R-tree using fractals [ C ]//Proceedings of the 20th International Conference on Very Large Database (VLDB). San Francis- co, CA, USA: Morgan Kaufmann Publishers Inc., 1994: 500-509.
  • 3Chakrabarti K, Ortega-Binderberger M, Porkaew K, et al. Similar shape retrieval in MARS[ C ]//Proceedings of 2000 IEEE International Conference on Multimedia and Expo. New York, NY, USA: IEEE Signal Processing Society, 2000:709-712.
  • 4Rafiei D. On similarity-based queries for time series data [C]//Proceedings of the 15th IEEE International Confer- ence on Data Engineering (ICDE). NW Washington, DC, USA : IEEE Computer Society, 1999:410-417.
  • 5Kom F, Jagadish H, Faloutsos C. Efficiently supporting ad hoc queries in large datasets of time sequences [ C ]//Pro-ceedings of 1997 ACM SIGMOD International Conference on Management of Data. New York, NY, USA : ACM Press, 1997:289-300.
  • 6Keogh E,Pazzani M. A simple dimensionality reduction tech- nique for fast similarity search in large time series databases [C ]//Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). London, UK: Springer-Verlag,2000 : 122-133.
  • 7Yi B, Faloutsos C. Fast time sequence indexing for arbitrary LP norms[ C]HProceedings of the 26th International Con- ference on Very Large Databases (~LDB). San Francisco, CA, USA : Morgan Kaufmann Pubhshers Inc., 2000 : 385-394.
  • 8Chakrabarti K,Keogh E,Mehrotra S,et al. Locally adaptive dimensionality reduction for indexing large time series data- bases[ J ]. ACM Transactions on Database Systems, 2002, 27(2) : 188-228.
  • 9Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subse- quence matching in time-series databases [ C ]//Proceed- ings of the 1994 ACM SIGMOD International Conference on Management of Data. New York, NY, USA : ACM Press, 1994:419-429.
  • 10李斌,谭立湘,章劲松,庄镇泉.面向数据挖掘的时间序列符号化方法研究[J].电路与系统学报,2000,5(2):9-14. 被引量:29

二级参考文献9

  • 1M Datar, A Gionis, P Indyk,et al. Maintaining Stream Statistics over Sliding Windows[A]. Proc of the 2002 Annual ACM-SIAM Syrup on Discrete Algorithms[C]. 2002. 635-644.
  • 2L Golab, M T Ozsu. Issues in Data Stream Management[J].SIGMOD Record, 2003,32(2): 5-14.
  • 3Y Zhu, D Shasha StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time[A]. Proc of the 28th Int'1 Conf on Very Large Data Bases[C]. 2002. 358-369.
  • 4C Bettini, C E Dyreson, W S Evans, et al. A Glossary of Time Granularity Concepts[A]. Temporal Databases: Research and Practice. Lecture Notes in Computer Science 1399[C]. 1998. 406-413.
  • 5B Babcock, S Babu, M Datar, et al. Models and Issues in Data Stream Systems[A]. PODS[C]. 2002.
  • 6Das Gautam, Lin David, Mannila Heikki, et al. Rule Discovery from Time Series. In: Proc. Fourth Annual Conference on Knowledge Discovery and Data Mining.
  • 7Andrea Baraldi, Ethem Alpaydm. Simplified ART: A New Class of ART Algorithms. Technique Report of INTERNATIONAL COMPUTER SCIENCE INSTITUTE , California: Berkeley, 1998.
  • 8Keogh E. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases. In: Proceedings of the 9th international Conference on Tools with Artificial Intelligence. [s. 1.]: IEEE Press, 1997. 578-584
  • 9黎明,严超华,刘高航.基于遗传策略和神经网络的非监督分类方法[J].软件学报,1999,10(12):1310-1315. 被引量:3

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部