摘要
在不动点理论的研究中,最近Kada 等人在度量空间中引入了w 距离概念。该文在完备的度量空间中也引入W 距离,并得到如下主要结果:设(X,d) 是一完备的度量空间,p 是X上的w 距离。设T:X→X满足:对每一个x ∈X,存在正整数n(x),使对一切y ∈X都有p( Tn(x) x,Tn(x)y) ≤λmax{p(x,y),p(x ,Tn(x)y) ,p(x,Tn(x) x)} 且对每一个u ∈X,u ≠Tu,有inf{p(x ,u) + p(x ,Tix):x ∈X} > 0,i ∈N,则T在X中有唯一不动点y,且p(y,y) = 0 。
In the study of fixed point theorems,Recently Kada et al introduced the concept of w distance in a metric space. In this paper the concept of w distance is introduced in a complete metric space and the result is as follows: Let (X,d) be a complete metric space and let p be a w distance in X.Let T:X→X satisfying:for all x∈X,exists n(x)∈N and for all y∈X p(T n(x) x,T n(x) y)≤λ max {p(x,y),p(x,T n(x) y)},p(x,T n(x) x) and for all u∈X,u≠Tu, inf {p(x,u)+p(x,T ix):x∈X}>0,i∈N Then T has a unique fixed point in X and p(y,y)=0。
出处
《南京理工大学学报》
EI
CAS
CSCD
1999年第5期454-457,共4页
Journal of Nanjing University of Science and Technology