期刊文献+

柔顺机构几何非线性多目标拓扑优化设计 被引量:13

MULTIOBJECTIVE TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS WITH GEOMETRICAL NONLINEARITY
下载PDF
导出
摘要 给出一种柔顺机构几何非线性多目标拓扑优化设计的新方法。首先,建立增量形式平衡方程,采用Total-La-grange描述方法和Newton-Raphson载荷增量求解技术获得几何非线性的结构响应。其次,建立适合求解几何非线性的多目标拓扑优化数学模型,目标函数以平均柔度最小和几何增益最大来满足机构的刚度和柔度需求,提出用标准化方法建立多目标函数,利用决定函数得到最优妥协解。目标函数敏度分析采用伴随求解技术,拓扑优化采用固体各向同性材料插值方法,并用移动近似算法进行迭代求解。最后,通过算例说明以上方法的正确性和有效性。研究结果表明,运用该柔顺机构几何非线性多目标拓扑优化方法能够在刚度和柔度之间找到最优妥协解,不但提高机构柔度,而且提高机构刚度,同时也说明对柔顺机构进行几何非线性拓扑优化的必要性。 A new multiobjective topology optimization method for compliant mechanisms with geometrical nonlinearity is presented.Geometrically nonlinear structural response is calculated using a Total-Lagrange finite element formulation and the equilibrium is found using an incremental scheme combined with Newton-Raphson iterations.The multiobjective topology optimization problem is established by the minimum compliance and maximum geometric advantage to design a mechanism which meets both stiffness and flexibility requirements,respectively.The weighted sum of conflicting objectives resulting from the norm method is used to generate the optimal compromise solutions,and the decision function is set to select the preferred solution.The solid isotropic material with penalization approach is used in design of compliant mechanisms.The sensitivities of the objective functions are found with the adjoint method and the optimization problem is solved using the method of moving asymptotes.These methods are further investigated and realized with the numerical examples,which are simulated to show the availability of this approach.
出处 《机械强度》 CAS CSCD 北大核心 2011年第4期548-553,共6页 Journal of Mechanical Strength
基金 国家自然科学基金(50775073) 广东省自然科学基金(05006494) 广东省教育部产学研(2006D90304001) 粤港关键领域重点突破招标(东莞专项20061682)资助项目~~
关键词 柔顺机构 多目标拓扑优化 几何非线性 敏度分析 Compliant mechanism Multiobjective topology optimization Geometrical nonlinearity Sensitivity analysis
  • 相关文献

参考文献14

  • 1张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51. 被引量:58
  • 2Stadler W. Muhicriteria optimization in mechanics[J]. Applied Mechanics Review, 1984, 37: 277-286.
  • 3Min S, Nishiwaki S, Kikuchi N. Unified topology design of static and vibrating structures using multiobjective optimization [ J ]. Computers and Structures, 2000, 75: 93-116.
  • 4Chen T Y, Shieh C C. Fuzzy muhiobjective topology optimization[ J]. Computers and Structures, 2000, 78: 459-466.
  • 5Chen T Y, Wu S C. Multiobjective optimal topology design of structures [J]. Computational Mechanisc, 1998, 21: 483-492.
  • 6Bruns T E, Tortorelli D A. Topology optimization of non-linear elastic structures and compliant mechanisms [ J ]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 3443-3459.
  • 7Buhl T, Pedersen C B W, Sigmund O. Stiffness design of geometrically non-linear structures using topology optimization[ J]. Structural Optimization, 2000, 19(2): 93-104.
  • 8Gea H C, Luo J H. Topology optimization of structure with geometrical nonlinearities[J]. Computers and Structure, 2001, 79: 1977-1985.
  • 9Jog C S. Distributed-parameter optimization and topology design for non- linear thermoelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 132(1-2): 117-134.
  • 10Pedersen C B W, Buhl T, Sigmund O. Topology synthesis of large-displacement compliant mechanisms[Jl. International Journal for Numerical Methods in Engineering, 2001, 50: 2683-2705.

二级参考文献24

  • 1徐飞鸿,荣见华.多工况下结构拓扑优化设计[J].力学与实践,2004,26(3):50-54. 被引量:14
  • 2荣见华,姜节胜,颜东煌,赵爱琼.基于人工材料的结构拓扑渐进优化设计[J].工程力学,2004,21(5):64-71. 被引量:36
  • 3傅建林,荣见华,杨振兴.带有预应力的连续体组合结构拓扑优化[J].应用力学学报,2005,22(2):231-236. 被引量:6
  • 4荣见华,唐国金,杨振兴,傅建林.一种三维结构拓扑优化设计方法[J].固体力学学报,2005,26(3):289-296. 被引量:38
  • 5[1]Bendsoe M P, Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer methods in Applied mechanics and Engineering, 1988, 71:197~224
  • 6[2]Nishiwaki S, Frecker M I, Min S, et al. Topology optimization of compliant mechanisms using homogenization method. International Journal for Numerical Method Engineering, 1998, 42:535~559
  • 7[3]Yin L, Ananthasuresh G K. A novel formulation for the design of distributed compliant mechanisms. In:Proceedings of the 2002 ASME Design Engineering Technical Conferences, 2002, DETC2002/MECH-34213
  • 8[4]Nishiwaki S, Min S, Yoo J, et al. Optimal structural design considering flexibility. International Journal for Numerical Method Engineering, 2001, 190:4 457~4 504
  • 9[5]Frecker M I, Ananthasuresh G K, Nishiwaki S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization. Transactions of the ASME, Journal of Mechanical Design, 1997, 119(2):238~245
  • 10[6]Frecker M I, Kota S, Kikuchi N. Use of penalty function in topological synthesis and optimization of strain energy density of compliant mechanisms. In:Proceedings of the 1997 ASME Design Engineering Technical Conferences, 1997, DETC97/ DAC-3760

共引文献65

同被引文献124

引证文献13

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部