摘要
设N,H是任意的群.若存在群G,它具有正规子群≤Z(G),使得≌N且G/≌H,则称群G为N被H的中心扩张.本文完全分类了当N为p^3阶初等交换p群及H为内交换p群时,N被H的中心扩张得到的所有不同构的群.从而我们完全分类了初等交换p群被内交换p群的中心扩张得到的所有不同构的群.
Assume N and H are groups. If there is a group G which has a normal subgroup N 〈 Z(G) such that N ≈ N and GIN ≈ H, then G is called a central extension of N by H. In this paper, we classified all groups which are central extensions of N by H, where N is an elementary abelian p-group of order p3 and H is an inner abelian p-group. Thus all groups which are central extensions of an elementary abelian p-group by an inner abelian p-group are classified.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2011年第5期739-752,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11071150)
山西省自然科学基金(2008012001)
山西省回国留学人员科研项目([2007]13-56)
关键词
中心扩张
初等交换p群
内交换p群
central extension
elementary abelian p-groups
inner abelian p-groups