期刊文献+

一种新的航空发动机自适应模型设计与仿真 被引量:13

Design and simulation of a new novel engine adaptive model
下载PDF
导出
摘要 提出了一种基于机载非线性发动机模型,且具有输入端积分补偿的卡尔曼滤波器估计器的发动机自适应模型设计方法。其主旨是经过相似变换,在非线性相对弱化的另一坐标区域内设计常规卡尔曼滤波估计器,利用所得卡尔曼估计器对各估计回路的初步解耦,进一步在各观测回路中引入输入误差积分激励,对滤波器的输入进行实时积分修正,充分实现各估计参数回路的静态解耦。同时,将该卡尔曼滤波器与机载非线性实时模型综合,从而使发动机自适应模型具有大范围无静差参数跟踪能力。最后,对所提出建立的自适应模型的参数估计能力和鲁棒性进行了数字仿真验证。 A new type of engine adaptive mode is proposed to tracking necessary performance degradations and evaluating engine immeasurable parameters,and it is improved by including Kalman filter and having the performance parameter as adjustable ones.The main idea to design the adaptive model is to firstly transform the original dynamic system to another coordinate system which has less nonlinearity,and then in the new space the Kaman filter is designed to eliminate the coupling among all the loops to some extent,and further an added inspiration including error integration is introduced to estimate parameter loop to eliminate static decoupling entirely.The Kalman filter is combined with the nonlinear engine model to realize no error tracking for engine part degradations in a large working scale.At last,some numerical simulations were carried out to verify the convergence capability and robustness of the proposed engine adaptive model.
出处 《推进技术》 EI CAS CSCD 北大核心 2011年第4期557-563,共7页 Journal of Propulsion Technology
基金 国家自然科学基金资助项目(50576033) 南京航空航天大学基本科研业务费专项科研项目(Ns2010055)
关键词 航空发动机 性能蜕化 卡尔曼滤波 自适应模型 Aero-engines Performance degeneration Kalman filter Adaptive model
  • 相关文献

参考文献15

  • 1Mueller F D, Nobbs S G. Dual engine application of the performance seeking control algorithmn [ R ]. A1AA 93-1822.
  • 2Tich E J,Shaw P D, Berg D F. Performance seeking control for cruise optimization in fight aircraft [ R ]. AIAA 87-1929.
  • 3Gilyard G, Orme J. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane [ R]. AIAA 92-3743.
  • 4Luppold R H, Roman J R, Gallops G W, et al. Estimaling in flight performance variations using Kalman filter concepts[ R]. AIAA 89-2584.
  • 5李松林,孙健国,黄金泉,李健民.涡扇发动机机载自适应建模技术研究[J].航空动力学报,1998,13(3):315-318. 被引量:10
  • 6Kalman R E. A new approach to linear filtering and prediction problemsk [ J 1. Transaction of the ASME--Journal of Basic Engineering, 1960,82 ( Series D ) : 35-45.
  • 7Jan De Geeter, Hendrik Van Brussel, Joris De Schutter. A smoothly constrained Kalman filter [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10).
  • 8Constantinos Antoniou, Moshe Ben-Akiva, Haris N.Koutsopoulos nonlinear Kalman filtering algorithms for on- line calibration of dynamie traffic assignment models [ J]. IEEE Transaetions on Intelligent Transportation Systems, 2007,8(4).
  • 9Chien-Shu Hsieh. General two-stage extended Kalman filtersl[J].1EEE Transactions on Automatic Control, 2003, 48(2).
  • 10Samer S, Saab A Heuristic. Kalman filter for a class of nonlinear systems [ J ]. 1EEE Transactions on Automatic Control. 2004.49 ( 12 ).

二级参考文献15

  • 1兰春贤,孙健国.基于部件跟踪滤波器的解析余度技术[J].航空动力学报,1994,9(3):289-292. 被引量:4
  • 2李松林,涡扇发动机增广变量模型(ASVM)和卡尔曼滤波器(KF)研究报告,1996年
  • 3李松林,涡扇发动机状态变量模型(SVM)和稳态变量模型(SSVM)研究报告,1996年
  • 4李松林,涡扇发动机自适应模型(ADEM)研究报告,1996年
  • 5李松林,孙健国,李健民,唐世建.求解涡扇发动机数学模型的有限域搜索方法[J].航空动力学报,1997,12(3):276-278. 被引量:19
  • 6Luppold R H,Roman J R,Gallops G W,et al.Estimating in-flight performance variations using Kalman filter concepts[R].1989.
  • 7Martin D.Espana,On the estimation algorithm for adaptive performance optimization of turbine engines[R].AIAA-93-1823,NASA-TM-4551,1993.
  • 8Gilyard G,Orme J.Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane[R].AIAA 92-3743,1992.
  • 9Maine T,Gilyard G,Lambert H.A preliminary evaluation of a F100 engine parameter estimation process using flight data[R].AIAA-90-1921,1990.
  • 10Lambert H.A simulation study of turbofan engine deterioration estimation using Kalman filter techniques[R].NASA-TM-104233.

共引文献32

同被引文献123

引证文献13

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部