期刊文献+

基于小波包变换的表面肌电信号模式识别 被引量:4

Surface EMG Signal Mode Recognition Based on Wavelet Package Transform
下载PDF
导出
摘要 采用小波包变换的方法对表面肌电信号sEMG进行了多尺度分解,并提取小波包分解系数的能量值构建特征矢量,采用四种方法设计多类最小二乘支持向量机(LS-SVM)分类器,对8种表面肌电信号进行了模式分类。实验结果表明,采用四种多类分类方法的LS-SVM分类器对8种表面肌电信号的平均识别率在90%以上,LS-SVM分类准确率明显优于传统的RBF神经网络分类器。 The surface electromyographic signal is analyzed by wavelet package transform. The feature vectors are built by extracting the energy value of the wavelet package coefficients. The multi-class least squares support vector machine classifier is designed by using four kinds of multi-class classification approach. The LS-SVM classifier is applied to the classification of eight movements with recording of the surface EMG. Experimental results show that the average recognition rate is over 90%, and the classification accuracy of LS-SVM classifier is significantly better than RBF neural network classifier.
作者 王玲
出处 《现代电子技术》 2011年第17期122-124,128,共4页 Modern Electronics Technique
关键词 表面肌电信号 小波包变换 LS-SVM 模式识别 surface electromyographic signal wavelet package transform LS-SVM pattern recognition
  • 相关文献

参考文献8

  • 1ENGLEHART K,HUDGINS B,PARKER P A.A wave-let-based continuous classification scheme for multifunctionmyoelectric control. IEEE Trans.on Biomed.Eng . 2001
  • 2AJIBOYE A B,WEIR R F.A heuristic fuzzy logic ap-proach to EMG pattern recognition for multifunctionalprosthesis control. IEEE Trans.Neural Syst.Reha-bil.Eng . 2005
  • 3Oskoei MA,Hu HS.Myoelectric control systems-a survey. Biomedical Signal Processing and Control . 2007
  • 4Mohammadreza Asghari Oskoei,Huosheng Hu.Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Transactions on Biomedical Engineering . 2008
  • 5K. Englehart,B. Hudgin.A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering . 2003
  • 6Vapnik VN.An overview of statistical learning theory. IEEE Transactions on Neural Networks . 1999
  • 7Marie-Franc,oise Lucas,Adrien Gaufriau,Sylvain Pascual,Christian Doncarli,Dario Farina.Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization. Biomedical Signal Process and Control . 2008
  • 8SUYKENS J A K,GESTEL T V,BRABANTERJ D,et al.Least squares support vector machines. . 2002

同被引文献35

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部