期刊文献+

基于子块优化及全局整合的局部判别投影法 被引量:1

Locally Discriminant Projection Algorithm Based on the Block Optimization and Combination Strategy
下载PDF
导出
摘要 已有投影算法都直接通过完整的输入训练集求解最佳变换矩阵,难以进行增量式学习扩展。针对此问题,该文通过组合优化策略提出局部判别投影方法应用于分类问题。该算法同时包括类间判别信息和类内局部保持特征,求得的变换矩阵还具有正交性。此外,利用核函数将算法扩展至非线性应用,使之可以适应更多的数据类型。在ORL人脸库和小样本说话人辨认应用中验证了该算法的有效性。 It is difficult for the traditional projection algorithms to extend to incremental learning since they use the whole training sets for solving out the projection matrix directly.To tackle this problem,a novel method,named Block optimization and Combination strategy,used for Locally Discriminant Projection(BCLDP) is proposed.This method takes into account both intra-class and interclass geometries;and has the orthogonality property.Furthermore,BCLDP is extended to nonlinear case using kernel function,which makes BCLDP better suits for diverse application.The experiments on ORL face database and speaker identification application demonstrate the effectiveness of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第9期2175-2180,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61070043) 浙江省自然科学基金(Y1100611)资助课题
关键词 模式识别 局部判别投影 组合优化策略 核函数 子空间学习 Pattern Recognition Locally discriminant projection Block optimization and combination Kernel function Subspace learning
  • 相关文献

参考文献14

  • 1Wen Jin-huan, Zheng Tian, She Hong-wei, et al. Feature extraction of hyperspectral images based on preserving neighborhood discriminant embedding. International Conference on Image Analysis and Signal Processing (IASP), Zhejiang, 2010: 257-262.
  • 2Kumar V P, Kishore K V K, and Kumar K H. Hybrid face recognition with locally discriminating projection. International Conference on Signal Acquisition and Processing, Bangalore, India, 2010: 327-331.
  • 3He Xiao-fei, Cai Deng, Yan Shui-cheng, et al. Neighborhood preserving embedding. Tenth IEEE International Conference Computer Vision, Beijing, 2005: 1208-1213.
  • 4He Xiao-fei, Yan Shui-cheng, Hu Yu-xiao, et al. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(3): 328-340.
  • 5Kokiopoulou E and Saad Y. Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2143-2156.
  • 6申中华,潘永惠,王士同.有监督的局部保留投影降维算法[J].模式识别与人工智能,2008,21(2):233-239. 被引量:30
  • 7Cai Deng, He Xiao-fei, and Zhou Kun. Locality sensitive discriminant analysis. International Joint Conferences on Artificial Intelligence, Hyderabad, India, 2007:708 713.
  • 8Wei B and Tao D C. Biased discriminant euclidean embedding for content-based image retrieval. IEEE Transactions on Image Processing, 2010, 19(2): 545-554.
  • 9Cai H, Mikolajczyk K, and Matas J. Learning linear discriminant projections for dimensionality reduction of image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 338-352.
  • 10Chen Yu, Zhang Xin, Zhang Wei-feng, et al. Maximum margin subspace projections for face recognition. International Conference on Communication, Macao, 2010 Innovative Computing and 221-224.

二级参考文献15

  • 1Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
  • 2Roweis S T, Saul I. K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290 (5500) : 2323- 2326
  • 3He Xiaofen, Niyogi P. Locality Preserving Projections//Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, 16: 153-160
  • 4Jolloffe I T. Principal Component Analysis. New York, USA: Springer-Verlag, 1986
  • 5Fisher R A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, 7(2): 179-188
  • 6Fukunaga K. Introduction to Statistical Pattern Recognition. 2nd Edition. Boston, USA: Academic Press, 1990
  • 7Sugiyama M. Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction//Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006:905-912
  • 8Belkin M, Niyogi P. I,aplacian Eigenmaps and Spectral Techniques for Embedding and Clustering // Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001, 14: 585-591
  • 9Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998
  • 10Scholkopf B, Smola A J, Muller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319

共引文献29

同被引文献5

引证文献1

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部