期刊文献+

基于样本互作转换的人脸识别 被引量:4

Face Recognition Based on Samples Interaction Transformation
下载PDF
导出
摘要 针对人脸识别问题,因人脸图像具多姿态性、实际样本少等特性,且传统识别方法存在信息利用率低、分类过程繁琐等缺陷。为提高人脸识别精度并简化模型,提出了一种新的多人脸样本互作转换方法,将同时识别多个人脸的多分类问题简化为简单二分类问题,进行统一建模,充分利用图像信息,并基于可交换核函数消除互作样本中因初始样本排列顺序不同带来的影响,然后对产生的新特征进行非线性筛选,最后以简单投票策略对独立测试样本进行类别校正。基于ORL人脸数据库进行仿真,独立测试样本识别准确率高于95%,明显高于参比模型。实验结果表明,样本互作转换能有效简化识别模型,在海量数据识别中具有较好的应用价值。 In face recognition research, due to some problems of the face images such as multi-pose and small actual samples, the traditional identification methods have the defects of low information utilization rate and cumbersome classification process. To improve face recognition accuracy and simplify the model, a sample interaction transformation was proposed in this paper, which can transform the multi-classification to a simple binary class4fication, and has the trait of full use of image information. A symmetrical kernel function was inducted to solve the rank problem of the two initial samples in interaction sampling pair and irrelevant, and redundant features were eliminated nonlinearly with support vector machine. Finally, the prediction results were further corrected by simple-vote decision. The sim- ulation experiments based on ORL face database and the new method have the highest recognition accuracy in all ref- erence models. The result shows that interaction transformation can simplify the model and has a good value in recog- nition of the huge amounts of data.
作者 杨华庆
出处 《计算机仿真》 CSCD 北大核心 2011年第9期306-308,326,共4页 Computer Simulation
关键词 人脸识别 互作转化 支持向量机 可交换核函数 Face recognition Interaction transformation Support vector machine ( SVM ) Symmetrical kernelfunction
  • 相关文献

参考文献7

二级参考文献29

共引文献39

同被引文献26

  • 1李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 2R Chellapa, C L Wilson, S Sirohey. Human and Machine Recognition of Faces : A Survey [ C ]. Proceedings of the IEEE, 1995,83 (5) :705 - 740.
  • 3E J Candes, D L Donoho. Curvelets - a surprisingly effective nonadaptive representation for objects with edges[ C ]. Nashville :Vanderbilt University Press, 2000 : 105 - 120.
  • 4明芳.海战场三维态势可视化技术研究[D].中国舰船研究院,2011.
  • 5L. Torresani, D. Yang, et.al. Tracking and modeling non- rigid objects with rank constraints [C]//. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001:493 -500.
  • 6C. Bregler, A. Hertzmann and H. Biermann. Recovering non-rigid 3D shape from image streams [C]//. In Proc. IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR), 2000: 690-696.
  • 7A. Roy-Chowdhury. Towards a measure of deformability of shape sequences [J]. Pattern Recogniton Letters, 2007, 28:2164-2172.
  • 8X. Llado, A. Del Bue, and L. Agapito Recovering Eu- clidean deformable models from stereo-motion [C]// 19th International Conference on Pattern Recognition, 2008:1- 4.
  • 9J. Fayad, A. Del Bue, L. Agapito, and P. M. Q. Aguiar . Non-rigid Structure from motion using quadratic defor- mation models [C]// British Machine Vision Conference (BMVC2009), London, UK, 2009.
  • 10Bregler C, Hertzmann A, Biermann H. Recovering non-rigid 3D shape from image streams. In: Proc 1EEE Conference on Computer Vision and Pattern Recognition (CVPR), 2000:90--96.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部