期刊文献+

多重分形序列的可见图分析 被引量:1

Visibility graph approach for multi-fractal series analysis
下载PDF
导出
摘要 可见图方法将多重分形时间序列映射为相应的网络,研究并对比了由不同机制产生的多重分形序列的非平凡特征,发现单分形时间序列的简单叠加得到的混合序列有多分形性质,对应的可见图是无尺度网络;而通过模型产生的多分形序列对应的可见图一般不具有无标度性质.为了辨别不同机制生成的多分形时间序列,小波分析和可见图必须联合运用才能识别这两种不同的分形结构,可见图算法作为传统时间序列分析方法的补充在揭示序列产生机制时具有重要的用途. Visibility graph method is used to map multi-fractal series to complex networks. Intrin- sic traits of multi-fractal series generated by different dynamical mechanisms were compared. It is found that mixture series constructed by superposition of several mono-fractal Brownian motions behave generally with multi-fractal character and the corresponding networks are scale-free. While for the multi-fractal series generated by theoretical models, the corresponding visibility graphs dis- play complicated behaviors rather than scale-free. In order to distinguish between these different generators, joint use of wavelet analysis and visibility graph is required to make clear the dynamical mechanisms embedded in multi-fractal time series. Visibility graph method is a necessary complement to traditional time series analysis approaches, which has potential use in detecting dynamical mechanisms of complex systems from output series.
出处 《上海理工大学学报》 CAS 北大核心 2011年第4期357-361,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10975099 10635040) 上海市重点学科建设资助项目(S30501) 上海市高等学校特聘教授(东方学者)岗位计划资助项目
关键词 可见图 多重分形时间序列 度分布 visibility graph multi-fractal time series degree distribution
  • 相关文献

参考文献5

  • 1GAO Z,JIN N. Community structure detection in com- plex networks with applications to gas-liquid two- phase flow[J]. LNICST,2009,5:1917 - 1928.
  • 2GAO Z,JIN N. Flow-pattern identification and nonlin- ear dynamics of gas-liquid two-phase flow in complex networks[J]. Phys Rev E, 2009,79: 066303.
  • 3DONNER R V,ZOU Y. Recurrence networks--a novel paradigm for nonlinear time series analysis[J]. New J Phys,2010,12: 033025.
  • 4Y/LNG H,YIN C, ZHU G, LIB. Self-affinefractals em- bedded in spectra of complex networks[J]. Phys Rev E, 2008,77: 045101.
  • 5赵丽丽,唐镇,王建勇,王建波,杨会杰.基于复杂网络理论的时间序列分析[J].上海理工大学学报,2011,32(1):47-52. 被引量:7

二级参考文献25

  • 1王建波.基于复杂网络理论的时间序列分析[D].上海:上海理工大学,2010.
  • 2YANG Y, YANG H. Complex network-based time series analysis [J]. Physica A, 2008,387:1381 - 1386.
  • 3JIANG Z, YANG H, WANG J. Complexities of human promoter sequences [J]. Physica A, 2009,388:1299 - 1302.
  • 4WANG J, YANG H. Complex network based analysis of air temperature data in China [J]. Mod Phys Lett B, 2009,23:1781 - 1789.
  • 5YANG Y, WANG J, YANG H, et al. Visibility graph approach to exchange rate series [J]. Physica A, 2009,388:4431 - 4437.
  • 6DONNER R V, ZOU Y. Recurrence networks a no- vel paradigm for nonlinear time series analysis [J].New J Phys,2010,12:033025.
  • 7GAO Z, JIN N. Flow-pattern identification and non- linear dynamics of gas-liquid two - phase flow in com- plex networks [J]. Phys Rev E,2009,79:066303.
  • 8GAO Z, JIN N. Community structure detection in complex networks with applications to gas-liquid two- phase flow [J]. LNICST, 2009,5:1917 - 1928.
  • 9LUO F. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory [J]. BMC Bioinformatics, 2007,8: 299.
  • 10LACASA L, LUQUE B, LUQUE J, et al. From time series to complex networks: The visibility graph [J]. Proc Natl Acad Sci,2008,105:4972- 4975.

共引文献6

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部