期刊文献+

悬垂弹性细杆的几何形态 被引量:4

Geometrical Shape of a Hanging Thin Elastic Rod
下载PDF
导出
摘要 基于Kirchhoff动力学比拟理论讨论悬垂弹性杆的几何形态。文中以沿杆中心线的弧坐标为自变量,杆截面转角为未知变量,建立弹性细杆在重力作用下的大变形平衡方程。以抗弯刚度与重力因素之比为小参数,柔索的悬链线为零次近似,导出非线性方程的近似解析积分。实际工程问题中常将悬链线作为细长缆线或管线等悬垂工程对象几何形态的近似表达,导出的公式可用于悬链线受抗弯刚度影响的误差修正。 The geometrical shape of a hanging thin elastic rod was discussed based on Kirchhoff theory of dynamical analogy.Taking the arc-coordinate along the centerline of rod as independent variable,and the rotating angle of the cross section of rod as dependent variable,the equilibrium equations of a thin elastic rod with large deformation were established under the action of gravitation force.Selecting the ratio of bending rigidity of the rod to the gravitation factor as a small parameter,and the catenary of a flexible cord as zero-th approximation,the approximate analytical solution of nonlinear equations was obtained.Since in engineering practice the catenary is used to express the curve of a thin long rope or pipe approximately,the formulas can be applied as a correction of the influence of bending rigidity to the catenary.
作者 刘延柱
出处 《力学季刊》 CSCD 北大核心 2011年第3期295-299,共5页 Chinese Quarterly of Mechanics
基金 国家自然科学基金资助项目(10972143)
关键词 悬链线 弹性细杆 Kirchhoff动力学比拟 catenary thin elastic rod Kirchhoff's theory of dynamical analogy
  • 相关文献

参考文献6

二级参考文献31

共引文献92

同被引文献48

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部