期刊文献+

一类新的整谱图

Some New Integral Graphs
下载PDF
导出
摘要 设是一个简单的连通图,若的邻接矩阵的特征值全为整数,则称为整谱图.利用移接变形的方法,构造了一些新的整谱图.运用矩阵理论,证明了下列结论:若是由顶点为3的完全图通过复制次后,将其中每个图的一个顶点粘接在一起而成的图,这样具有个顶点.则是整谱图当且仅当i=k(k-1)/2,k∈Z+. Let G be a simple connected graph with vertices,G is called integral graph if it has an integral spectrum.In the paper,using transplantation method,some new integral graphs have been constructed.We obtain the following result by matrix theory: Let K3 denote the complete graph on 3 vertices,let Gi(i=1,2…,n) denote the graph obtained by identifying the root u in i copies of K3.Then,Gi is an integral graph if and only if i=k(k-1)/2,k∈Z+.
作者 周后卿
出处 《邵阳学院学报(自然科学版)》 2011年第3期6-9,共4页 Journal of Shaoyang University:Natural Science Edition
基金 湖南省科技厅科技计划项目(2010JT4043) 邵阳市科技局科技计划项目(N1110)
关键词 邻接矩阵 特征值 整谱图 adjacency matrix eigenvalues integral graph
  • 相关文献

参考文献10

  • 1F.Harary and A. J. Schwenk. Which Graphs have Integral Spectra? In Graphs and Combinatorics [M]. (Ed. R. Bari and F. Harary). Berlin: Springer-Verlag, 1974: 45-51.
  • 2L. Wang and X. Li. Integral trees with diameters 5 and 6[J]. Discrete Mathematics, 2005, (297):128-143.
  • 3L. Wang, X. Li and C. Hoede.Two classes of integral regular graphs[J]. Ars Combin,2005, (76):303-319.
  • 4Wasin So. Note Integral circulant graphs [J]. Discrete Mathematics, 2005, (306): 153-158.
  • 5M. Lepovic. On integral graphs which belong to the class [J]J. Appl. Math. Comput., 2006,(20):61-74.
  • 6L G Wang and X L Li. Some new classes of integral trees with diameters 4 and 6. Australasian [J]. Combinatorics, 2000,(21):237-243.
  • 7张洪瑞,王力工.用广义线图构造整谱图[J].郑州大学学报(理学版),2009,41(4):27-30. 被引量:2
  • 8景占策,侯耀平.图类■中的整谱图[J].数学的实践与认识,2008,38(19):166-172. 被引量:3
  • 9D.Cvetkovic, M.Doob,H.Sachs, Spectra of graphs:Theory and applications [M].3rd revised and enlarged edition, J.A. Bart verglas,Heidelberg,Leipzig,1995.
  • 10R. A. Horn and C.R. Johnson. Matrix Analysis (2nd Edition) [M]. Cambridge University Press, England, 1985.

二级参考文献20

  • 1颜娟,许克祥.正则图的变换图的谱[J].高校应用数学学报(A辑),2008,23(4):476-480. 被引量:2
  • 2侯耀平,周后卿.恰有两个主特征值的树[J].湖南师范大学自然科学学报,2005,28(2):1-3. 被引量:19
  • 3Lepovic M. On integral graphs which belong to the class αKuUβb[J].J Appl Math 8-Computing, 2004,14:39- 49.
  • 4Lepovic M. On integral graphs which belong to the class αKa,b[J]. Graphs and Combinatorics,2003.19:527-532.
  • 5Lepovic M. On integral graphs which belong to the class αKuUβKb,b[J]. Discrete Mathematics. 2004. 285: 183- 190.
  • 6Lepovic M. On integral graphs which belong to the class αKa,a,...a,b,b,...b[J]. UNIV BEOGRAD PUBL FAK Ser Mat, 2006,17 : 52-59.
  • 7Lepovic M. On integral graphs which belong to the class αKuUβb[J]. J Appl Math & Computing,2006,20:61- 74.
  • 8柳柏濂.维合矩阵论[M].北京:科学出版社,2005.10-50.
  • 9Lepovic M. Some results on graphs wilh exactly tow main eigenvalues[J]. Univ P, eogra Publ Elektro-tehn (Ser. Mat), 2001,12:68-84.
  • 10Balinska T, Simi'c S K. The nonregular, bipartite, integral graphs with maximum degree 4. Part I: basic properties[J].Discrete Math, 2001,236(1) : 13-24.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部