期刊文献+

随机机翼结构阵风响应的分布函数及灵敏度分析 被引量:3

Analysis of CDF and Sensitivity of Gust Response of Stochastic BAH Wing Structure
原文传递
导出
摘要 随机结构在随机激励作用下的结构响应具有随机不确定性,响应的分布函数(CDF)能够充分地体现响应量分布变化规律,只要掌握了响应的CDF,就可以进一步掌握响应的统计信息。基于响应的CDF,对基本变量的分布参数进行灵敏度分析,可以表明基本变量的随机不确定性对输出响应的随机不确定性的影响程度,从而清楚地表明重要随机变量和非重要随机变量,为降低变量维数和优化设计提供依据。针对承受阵风激励的典型喷气运输机(BAH)的机翼,采用近似解析法、Monte Carlo模拟(MCS)法以及本文所建立的分层线抽样(SLS)方法对机翼的翼根弯矩(RBM)进行CDF求解,并进行CDF的灵敏度分析,通过分析得到第二阶和第五阶模态的质量和频率对阵风响应的CDF影响较大的结论。 Uncertainty of structural parameters will lead to the uncertainty of responses of stochastic structures with stochastic excitation.The cumulative distribution function(CDF) of the response can adequately reflect the response quantity distribution.Once the CDF of the response is mastered,its statistical information may be further grasped.A sensitivity analysis of the distributed parameters of the basic variable based on the CDF of response may indicate its influence on the stochastic uncertainty of the output response,This approach shows clearly the important random variables and non-important random variables,thereby reducing the variable dimension and providing basis for design optimization.This paper employs the approximate analytical method,Monte Carlo simulation(MCS) method and a novel stratified line sampling(SLS) method to solve the CDF of the root bending moment(RBM) of a typical random BAH jet transport aircraft wing with gust excitation and the corresponding sensitivity.It is found that the masses and frequencies of the second and fifth order modals have comparatively larger influence on the CDF of gust response.
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第10期1770-1777,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(50875213) 航空科学基金(2009ZA53009) 西北工业大学基础研究基金(JC20100201)~~
关键词 分布函数 灵敏度 近似解析法 MONTECARLO模拟 分层线抽样法 阵风响应 翼根弯矩 cumulative distribution function sensitivity approximate analytical method Monte Carlo simulation stratified line sampling gust response root bending moment
  • 相关文献

参考文献16

  • 1Gasella G, Berger R L. Statistical inference[M]. Beijing: China Machine Press, 2002:29 -34.
  • 2Mendenhall W, Beaver R J, Beaver B M. Introduction to probability and statistics [M]. Beijing: China Machine Press, 2005: 154-163.
  • 3Wu Y T. Computational methods for efficient structural reliability and reliability sensitivity analysis [J]. AIAA Journal, 1994, 32(8): 1717 -1723.
  • 4Hasofer A M, Lind N C. Exact and invariant second-mo- ment code format[J]. Journal of the Engineering Mechan ics Division, ASCE, 1974, 100(1): 111- 121.
  • 5Rubinstein R Y. Simulation and the Monte Carlo method [M]. NewYork: Wiley, 1981: 144-181.
  • 6Schueller G I, Pradlwarter H J. A critical appraisal of re liability estimation procedures for high dimensions [J]. Probabilistic Engineering Mechanics, 2004, 19(4): 463-474.
  • 7Pradlwarter H J, Pellissetti M F, Schenk C A, et al. Realistic and efficient reliability estimation for aerospact structures[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(1216): 1597-1617.
  • 8宋述芳,吕震宙.高维小失效概率下的改进线抽样方法[J].航空学报,2007,28(3):596-599. 被引量:7
  • 9Rodden W P, Johnson E H. MSC/NASTRAN aeroelastic analysis user's guide: Version 68[M]. Los Angeles: MacNeal-Schwendler, 1994: 66-73, 357-373, 307- 411.
  • 10张伟伟,叶正寅,杨青,史爱明.基于ROM技术的阵风响应分析方法[J].力学学报,2008,40(5):593-598. 被引量:12

二级参考文献24

共引文献40

同被引文献27

  • 1道尔 E H,小柯蒂斯 H C,斯坎伦 R H,西斯托 F.气动弹性力学现代教程[M].陈文俊,尹传家,译.北京:中国宇航出版社,1991.
  • 2Au S K, Beck J L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilist Eng Mech, 2001, 16(4): 263-277.
  • 3Feng M, Michel G. Modified subset simulation method for reliability analysis of structural systems. Structural Safe- ty, 2011, 33(4): 251 260.
  • 4Mykland P, Tierney L, Yu B. Regeneration in Markov chain samplers. Journal of the American Statistical Asso- ciation, 1995, 90(429): 233-241.
  • 5Nummelin E. General irreducible Markov chains and non- negative operators. Cambridge: Cambridge University Press, 1984. Altaleb A, Chauveau D. Bayesian analysis of the logit model and comparison of two metropolis-hastings strate- gies. Computational Statistics : Data Analysis, 2002, 39 (1) : 137-152.
  • 6Altaleb A, Chauveau D. Bayesian analysis of the logit model and comparison of two metropolis-hastings strate- gies. Computational Statistics & Data Analysis, 2002, 39 (1) : 137-152.
  • 7Haario H, Saksman E, Tamminen J. Componentwise ad- aptation for high dimensional MCMC. Computational Sta-tistics, 2005, 20(2): 265-273.
  • 8Gelman A G, Roberts G O, Gilks W R. Efficient metrop olis jumping rules. Cambridge: Oxford University Press, 1996.
  • 9Rosenthal J S. Minorization conditions and convergence rates for Markov chain. Journal of the American Statisti cal Association, 1995, 90(430): 558-566.
  • 10Mira A. On metropolis-hasting algorithms with delayed rejection. International Journal of Statistics, 2001, 3: 231-241.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部