期刊文献+

面向双向不同带宽需求的绿波协调控制优化模型 被引量:30

Green wave coordinated control optimization models oriented to different bidirectional bandwidth demands
原文传递
导出
摘要 通过引入绿波带宽分配影响因子与带宽需求比例系数,构造了一种新的绿波协调控制模型性能指标函数通式,针对MAXBAND(MULTIBAND)模型与通用双向绿波协调控制模型,分别建立了面向双向不同带宽需求的最大绿波协调控制优化模型,并对是否可以获得双向绿波带宽的两种情况,比较了控制模型改进前后的设计效果。分析结果表明:在难以获得双向绿波协调控制效果的情况下,优化模型将适当选用单向绿波协调控制方式,以确保单向绿波带宽达到最大,并优先满足带宽需求较高行驶方向的设计要求;在可以获得一定双向绿波协调控制效果的情况下,优化模型将实现双向绿波带宽之和最大,并尽量根据双向带宽需求比为各个方向合理分配实际带宽。可见,优化模型合理有效。 A new performance index function of green wave coordinated control model was built by introducing bandwidth proration impact factor and bandwidth demand ratio.The green wave coordinated control optimization models oriented to different bidirectional bandwidth demands were proposed for MAXBAND(MULTIBAND) model and general bidirectional green wave coordinated control model respectively.Two cases that bidirectional green wave bandwidths existed or not were considered,and the design effects of different control models were compared.Analysis result indicates that when the coordinated control effect of bidirectional green wave could not be achieved,the optimization model will choose one-way green wave coordination control to guarantee maximum total bandwidth and prorate the bandwidth fully to the direction with higher bandwidth demand.While the coordinated control effect of bidirectional green wave could be achieved,the optimization model will not only guarantee maximum total bandwidth,but also prorate the bandwidth according to the bandwidth demand ratios of different directions.So the models are reasonable and effective.4 tabs,3 figs,16 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2011年第5期101-108,126,共9页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(50878088) 中央高校基本科研业务费专项资金项目(2011ZM0117) 高等学校博士学科点专项科研基金项目(200805610005)
关键词 交通信号控制 绿波协调 影响因子 带宽需求 带宽分配 优化模型 traffic signal control green wave coordination impact factor bandwidth demand bandwidth assignment optimization model
  • 相关文献

参考文献16

  • 1MORGAN J T, LITTLE J D C. Synchronizing traffic signals for maximal bandwidth[J]. Operations Research, 1964, 12(6): 896- 912.
  • 2LITTLE J D C. The synchronization of traffic signals by mixed-integer linear programming[J]. Operations Research, 1966. 14(4): 568-594.
  • 3LITTLE J D C, KELSON M D, GARTNER N H. MAX- BAND: a versatile program for setting signals on arteries and triangular networks[R]. Cambridge: Massachusetts Institute of Technology, 1981.
  • 4MESSER C J, WHITSON R H, DUDEK C L, et al. A variablesequence multiphase progression optimization program[J]. Highway Research Record, 1973(445): 24- 33.
  • 5CHANG E C P, MESSER C J. Arterial signal timing optimization using passerII-90-program user's manual[R]. Austin: Texas A & M University System, 1991.
  • 6CHAUDHARY N A, MESSER C J. PasserIV-96, version 2.1, user/reference manual[R]. Austin: Texas A & M University System, 1996.
  • 7GARTNER N H, ASSMANN S F, LASAGA F, et al. MULTIBAND--a variable bandwidth arterial progression seheme[J]. Transportation Research Record, 1990(1287):212-222.
  • 8GARTNER N H, ASSMANN S F, LASAGA F, et al. A MULTIBAND approach to arterial traffic signal optimization[J]. Transportation Research Part B: Methodological, 1991, 25(1): 55-74.
  • 9STAMATIADIS C, GARTNER N H. MULTIBAND-96: a program for variable-bandwidth progression optimization of multiarterial traffic networks [J].Transportation Research Record, 1996(1554): 9 -17.
  • 10GARTNER N H, STAMATIADIS C. Arterial based control of traffic flow in urban grid networks[J].Mathematical and Computer Modelling, 2002, 35(5): 657-671.

二级参考文献41

共引文献123

同被引文献173

引证文献30

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部