摘要
Behaviours of urediospore germtube in Melampsora larici-populina on the leaf surface of Populus purdomii were studied by light microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and fluorescence microscope. Crab-like fusion cells on leaf surface, intercellular hyphal cells in leaf tissues, as well as nucleus states, were observed and counted up in this study. Under unsaturated humidity, 32% of germinated tubes fused into a distinguishable swollen crab-shaped cell at the merging site, and 10.5% of observed crab-like cells had more than three nuclei. Wedge-shaped mycelia developed and then penetrated the leaf surface directly, or indirectly through stomata. Tips of germtube passed through the intercellular cells of poplar leaves directly were found in TEM. Aniline blue dyeing also showed that the infecting hyphae could invade into the cuticle and epidemic cell wall directly. For the case of infection through stomata, there were two different situations. Short branches and wedge hyphae usually penetrated the leaf surface via opened stomata, whereas, some germtube branches and wedge hyphae penetrated leaves through the guard cell walls or stoma lips. In the latter case, the stomata were always closed. The samples from wild forestlands had the same fused cells and wedge hyphae, but the occurrence rate was much higher than that in the chamber. Even under the saturated air humidity, germtubes could roll back and formed fusion structure, or merged together with their tips. The fusion cells might centralize the plasma of merged germtubes and have a strong survival capacity to protect germtubes from dying under arid circumstances, and provide a chance of genetic variation as well.
Behaviours of urediospore germtube in Melampsora larici-populina on the leaf surface of Populus purdomii were studied by light microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and fluorescence microscope. Crab-like fusion cells on leaf surface, intercellular hyphal cells in leaf tissues, as well as nucleus states, were observed and counted up in this study. Under unsaturated humidity, 32% of germinated tubes fused into a distinguishable swollen crab-shaped cell at the merging site, and 10.5% of observed crab-like cells had more than three nuclei. Wedge-shaped mycelia developed and then penetrated the leaf surface directly, or indirectly through stomata. Tips of germtube passed through the intercellular cells of poplar leaves directly were found in TEM. Aniline blue dyeing also showed that the infecting hyphae could invade into the cuticle and epidemic cell wall directly. For the case of infection through stomata, there were two different situations. Short branches and wedge hyphae usually penetrated the leaf surface via opened stomata, whereas, some germtube branches and wedge hyphae penetrated leaves through the guard cell walls or stoma lips. In the latter case, the stomata were always closed. The samples from wild forestlands had the same fused cells and wedge hyphae, but the occurrence rate was much higher than that in the chamber. Even under the saturated air humidity, germtubes could roll back and formed fusion structure, or merged together with their tips. The fusion cells might centralize the plasma of merged germtubes and have a strong survival capacity to protect germtubes from dying under arid circumstances, and provide a chance of genetic variation as well.
基金
supported by grants from the National Natural Science Foundation of China (30771734)
the Provincial Natural Science Foundation, China (Shaan2008C109)
the Northwest A&F University Research Foundation, China (Z109021005)