摘要
针对单入单出离散时间非线性动态系统提出一种辨识方法.该方法采用带误差修正的改进泛模型作为非线性系统的结构模型,模型中的时变特征参量及误差修正系数采用粒子群(PSO)算法优化,优化后的模型可以逼近非线性系统.该方法简单、易于实现.通过对Box-Jenkins煤气炉数据等非线性被控对象的仿真研究及对模型的分析,表明了所提出算法的有效性.
An identification approach is proposed for a single-input and single-output nonlinear dynamic system of discrete time.In this method,the improved universal model with error correcting is taken as the structure model of the system,and the particle swarm optimization(PSO) algorithm is adopted to optimize the time-varying characteristic parameter and the error correcting coefficient.The model after optimization can approximate the nonlinear system.This method is simple and easy to implement.The simulation results of Box-Jenkins gas furnace data etc.and the analysis of the model show the effectiveness of the method.
出处
《控制与决策》
EI
CSCD
北大核心
2011年第11期1627-1631,共5页
Control and Decision
基金
黑龙江省普通高等学校电子工程重点实验室基金项目(DZZD20100023)
关键词
非线性系统辨识
粒子群优化
特征参量
改进泛模型
nonlinear system identification
particle swarm optimization
characteristic parameter
improved universal model