期刊文献+

半参数时变系数模型的序列相关检验 被引量:1

Testing Serial Correlation in Semiparametric Time-varying Coefficient Model
原文传递
导出
摘要 本文提出了两个统计量来检验半参数时变系数模型的序列相关:一个用于检验半变系数时序模型的有限阶序列相关,另一个用于检验半变系数平行数据模型的有限阶序列相关.在误差过程为鞅差的零假设下,所提出的两个检验统计量服从渐近正态或卡方分布.蒙特卡罗模拟研究表明所提出的检验统计量具有良好的有限样本性质. This paper proposes two test statistics for testing zero finite-order serial corre- lation in semiparametric time-varying coefficients model: one is for semivarying-coefficient time series model, and the other is for semivarying-eoefficient panel data model. Under the null assumption of a martingale difference error process, the proposed test statistics are shown to have the asymptotic normal or X2 distributions. Simulation studies show that the proposed test statistics have good finite sample properties.
作者 胡雪梅 刘锋
出处 《应用数学学报》 CSCD 北大核心 2011年第6期1103-1117,共15页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(No.11101452) 重庆市科委自然科学基金(CQ CSTC(NO.2009BB8221)) 重庆市教委科技(NO.KJ110713) 国家重点基础研究发展计划(NO.2011CB808002) 国家社科基金(NO.11CTJ004)资助项目
关键词 半变系数时序模型 半变系数平行数据模型 序列相关 鞅差 semivarying coefficient time series model semivarying coefficient panel data model serial correlation martingale difference
  • 相关文献

参考文献23

  • 1Engle R F, Granger W J, Rice J, Weiss A. Semiparametric Estimates of the Relation Between Weather and Electricity Sales. Journal of the American Statistics Association, 1986, 80:310-319.
  • 2[ Fan J Q, Huang T, Li R Z. Analysis of Longitudinal Data with Semiparametric Estimation of Covari- ance F~nction. Journal of the American Statistical Association, 2007, 102(478): 632-641.
  • 3Hardle W, Liang H, Gao J T. Partially Linear Models. New York: Springer-Verlag, 2000.
  • 4Hastie T, Tibshirani R. Varying-coefficient Models. Journal of the Royal Statistical Society (Series B), 1993, 55:757 796.
  • 5Fan J Q, Huang T. Profile Likelihood Inferences on Semiparametric Varying-coefficient Partially Linear Models. Bernoulli, 2005, 11:1031 1057.
  • 6Zhang W Y, Lee S Y, Song X. Local Polynomial Fitting in Semiparametric Varying Coefficient Models. Journal of Multivariate Analysia, 2002, 82:166 188.
  • 7Xia Y C, Zhang W Y, Tong H. Efficient Estimation for Semivarying-coefficient Models. Biometrika, 2004, 91(3): 661-681.
  • 8Martinussen T, Scheike T H. A Semiparametric Additive Regression Model for Longitudinal Data. Biometrika, 1999, 86:691 702.
  • 9~un Y, Wu H L. Semiparametric Time-varying Coefficients Regression Model for Longitudinal Data. ~candivanian Journal of Statistics, 2005, 32:21 47.
  • 10Durbin J, Watson C S. Testing for Serial Correlation in Least Squares Regression. Biometriha, 1950, 37:409 428.

二级参考文献1

共引文献13

同被引文献14

  • 1Anselin L. Spatial econometrics: methods and models [M]. Kluwer Academic, Dordrecht, 1988.
  • 2Cordy C B, D A Griffith. Efficiency of least squares estimators in the presence of spatial autocorrelation [J]. Communications in Statistics: Simulation and Computation, 1993, 22 (4): 1161 -1179.
  • 3Fan J, T Huang. Profile likelihood inferences on semiparametric varying-coefficient partially linear models [J]. Bernoulli, 2005, 11 (6): 1031 -1057.
  • 4Fan J, THuang, R Z Li. Analysis of longitudinal data with semiparametric estimation of covariance function [J]. Journal of the American Statistical Association, 2007, 102 (478) : 632 - 641.
  • 5Hu X M, Wang Z Z, Liu F. Zero finite-order serial correlation test in a semi-parametric varying-coefficient partially linear errors-invariables model [J]. Statistics and Probability Letters, 2008, 78 (12) : 1560 - 1569.
  • 6Imhof J P. Computing the distribution of quadratic forms in normal variables [J]. Biometrika, 1961,3 -4(48): 419 -426.
  • 7Li D, J Chen, Z Lin. Statistical inference in partially time-varying coefficient models [J]. Journal of Statistical Planning and Inference, 2011, 141: 995 -1013.
  • 8Pearson E S. Note on an approximation to the distribution of noncentral '1..2 [J]. Biometrika, 1959, 46: 364.
  • 9Xia Y, W Zhang, H Tong. Efficient estimation for semi varyingcoefficient models [J]. Biometrika, 2004, 91(3): 661 -681.
  • 10Zhang W, S Y Lee, X Song. Local polynomial fitting in semi varying coefficient models [J]. Journal of Multivariate Analysis, 2002, 82 (1) : 166 - 188.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部