期刊文献+

有限群的弱s-可换嵌入子群(英文)

On finite groups with some weakly s-permutably embedded subgroups
下载PDF
导出
摘要 设H为群G的一个子群,如果存在G的次正规子群T和群G的一个包含在H中的弱s-可换嵌入子群Hse使得G=HT且H∩T≤Hse,则称H为群G的一个弱s-可换嵌入子群.我们研究了弱s-可换嵌入子群对有限群的p-超可解性和p-幂零性的影响.推广了一些已有的结果. A subgroup H of a group G is said to be weakly s-permutably embedded in G,if there are a subnormal subgroup T of G and an s-permutably embedded subgroup Hse of G contained in H such that G = HT and H∩T≤Hse.In this paper,we investigate the influence of weakly s-permutably embedded subgroups on the p-supersolvability and p-nilpotency of finite groups.Some earlier results are generalized.
作者 赵涛
出处 《苏州大学学报(自然科学版)》 CAS 2011年第4期1-6,13,共7页 Journal of Soochow University(Natural Science Edition)
基金 the National Natural Science Foundation of China(10871032) the Natural Science Foundation of Jiangsu Province(BK2008156)
关键词 弱s-可换嵌入子群 s-可换子群 P-超可解群 P-幂零群 weakly s-permutably embedded subgroup s-permutable subgroup p-supersolvable group p-nilpotent group.
  • 相关文献

参考文献12

  • 1Gorenstein D. Finite Groups[ M ]. New York: Chelsea Publishing Company, 1968.
  • 2Kege! O H. Sylow-Gruppen und abnormalteiler endlicher Gruppen[ J]. Math Z, 1962, 78:205 -221.
  • 3Ballester-Bolinches A, Pedraza-Aguilera M C. Suffient conditions for supersolvability of finite groups [ J ]. J Pure Appl Algebra, 1998,127:113 - 118.
  • 4Li Yangming, Qiao Shouhong, Wang Yanming. On weakly s-permutably embedded subgroups of finite groups [ J ]. Comm Algebra, 2009,37 : 1086 - 1097.
  • 5Wang Yanming. On c-normality and its properties[ J ]. J Algebra, 1996,180:954 -965.
  • 6Wei Huaquan, Wang Yanming. On c -normality and its properties [ J ]. J Group Theory,2007,10 : 211 - 223.
  • 7A N Skiba. On weakly s-permutable subgroups of finite groups [ J ]. J Algebra,2007,315:192 -209.
  • 8Li Yanming,Wang Yanming,Wei Huaqian. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded[ J]. Acta Math Hung, 2005,108 (4) : 283 - 298.
  • 9Doerk K. Minimal nicht uberanflosbare endliche Gruppen[ J ]. Math Z, 1966,91:198 -205.
  • 10Wang Yanming, Wei Huaquan, Li Yangming. A generalization of a theorem of kramer and its appications [ J ]. Bull Austral Math Soc ,2002,65:467 - 475.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部