期刊文献+

多目标跟踪中联合概率数据关联优化算法 被引量:5

Joint Probability Algorithm in Data Association Based on DHN Artificial Nerve Network
下载PDF
导出
摘要 研究多目标实时精确跟踪问题,针对在战场目标密集和电磁环境复杂的情况下,经典多目标跟踪联合概率数据关联算法的计算量剧增,在目前的硬件条件下,算法的实时性和有效性已不能满足要求。为提高算法的计算速度和效率,通过量化可行联合事件中相匹配的量测与目标的统计距离,来定义优化计算的约束条件,从而构建能量函数,把搜索最优可行矩阵问题转化为整数规划问题,对算法进行改进。在分析优化条件完备性的基础上,构建DHN人工神经网络,利用非线性计算能力对整数规划问题进行求解,并采用温控扰动的办法提高收敛速度,降低计算量。仿真结果表明,算法能在复杂条件下实时有效地量测数据,准确分配给目标航迹。 In the complex electromagnetic environment with dense target concentration, the classic joint probability data association algorithm in multi-target tracking is associated with the enormous amount of computing. The realtime ability and associating effectiveness of algorithm cannot meet the requirements base on present hardware. The conditions of constraints for optimizing are defined by quantizing the statistical distance of targets with measurement in the feasible joint event, thus constructing an energy function and translating the problem of searching the best feasible matrix into an integer planning optimization problem. On the basis of analyzing the completeness of optimality conditions, the preferred joint probability data association algorithm is invented by constructing DHN artificial neural network and using the nonlinear computing ability. And the method of disturbance controlled by system temperature is adopted to improve the convergence rate and reduce the amount of computing. The simulation results indicate that the algorithm can distribute the measured data to target-path effectively in real-time.
出处 《计算机仿真》 CSCD 北大核心 2011年第11期14-18,共5页 Computer Simulation
关键词 数据关联 多目标跟踪 人工神经网络 Data association Multi-target tracking Artificial Neural Network
  • 相关文献

参考文献10

二级参考文献44

共引文献19

同被引文献18

  • 1田宏伟,敬忠良,胡士强,李建勋.基于多速率运动模型的多帧最近邻数据关联算法[J].上海交通大学学报,2005,39(3):413-416. 被引量:5
  • 2刘飞,张鹏林.基于卡尔曼滤波的时间序列影像背景估计[J].地理空间信息,2005,3(3):12-13. 被引量:5
  • 3葛爱军,王东进,陈卫东,陈伟.基于一维测量的多传感器多目标数据关联[J].火控雷达技术,2006,35(2):24-28. 被引量:1
  • 4刘海军,张学义,顾尔顺.测向交叉定位系统多目标数据关联研究[J].现代防御技术,2007,35(2):89-91. 被引量:6
  • 5Bar Shalom Y,Li X R. Multitarget-multisensor track- ing principles techniques [J]. Control system IEEE, 1996,11 (2) : 41-44.
  • 6Ilke Turkmen, Kerim data association with Guney Cheap. Joint probabilistic adaptive neuro-fuzzy inference system state filter for tracking multiple targets in clut- tered environment[J]. International journal of elec- tronics and communications, 2004,58(5) : 349-357.
  • 7Fei Lei. Adaptive background estimation of underwater using KalmanFiltering[J].CISP,2010,(1):64-67.
  • 8权太范.目标跟踪新理论与技术[M]{H}北京:国防工业出版社,200955-87.
  • 9R A Singer,R G Sea. An optimal tracking filter for peocessing sensor data of imprecisely determined origin in surveillance system[A].Miami Beach,1971.171-175.
  • 10R A Singer,R G Sea. New results in optimizing surveillance system tracking and data correlation performance in dense multitarget environments[J].{H}IEEE Transactions,1973,(6):571-582.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部