期刊文献+

改进的视觉同时定位与地图创建数据关联方法

Improved Data Association Method of Vision-based Simultaneous Localization and Mapping
下载PDF
导出
摘要 数据关联的规模随地图的不断增长而增加是导致机器人同时定位与地图创建(simultane-ous localization and mapping,SLAM)实时性能差的一个主要原因,极小连通支配集(connected domi-nating set,CDS)方法降低地图元素的数目,从而提高数据关联的计算效率,为了进一步优化MCDS方法的性能,对它进行了两处改进:一是延迟建立极小连通支配集;二是自适应地搜索极小连通支配集。在视觉SLAM中,应用SIFT算法提取自然路标,扩展卡尔曼滤波算法融合视觉信息与机器人位姿信息完成SLAM任务。实验结果表明,改进的极小连通支配集数据关联结果是可信的,减少SLAM计算复杂度的性能突出。 The scale of data association increases with the map grows,which is one of the major reasons of poor real-time performance of robot in process of Simultaneous Localization and Mapping(SLAM).The connected dominating set(CDS) approach is used to reduce the number of landmarks that need to be maintained in the map,which improve the computation efficiency of the data association.Two improvements are introduced to improve the CDS′S performance.Firstly,CDS is constructed lingeringly.Secondly,CDS is searched adaptively.In vision based SLAM,SIFT(Scale Invariant Feature Transform) algorithm is used to extract the Natural landmarks;SLAM is completed by fusing the vision information and robot pose with Extended Kalman Filter(EKF) indoor environment.Experiment results indicate that improved connected dominating set data association results are reliable;the capability of reducing computational complexity is outstanding.
出处 《机械科学与技术》 CSCD 北大核心 2011年第11期1791-1795,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(10872160)资助
关键词 同时定位与地图创建 数据关联 连通支配集 SIFT 扩展卡尔曼滤波 SLAM data association connected dominating set SIFT extended kalman filter
  • 相关文献

参考文献13

  • 1Camini Dissanayake M W M, Newman P, Clark S, etal. A solu- tion to the simultaneous localization and map building ( SLAM ) problem[ J ]. IEEE Transactions on Robotics and Automa- tion,2001,17 ( 3 ) :229 - 241.
  • 2Davey S J. Simultaneous localization and map building using the probabilistic multi-hypothesis tracker [ J ]. IEEE Transactions on Robotics,2007,23 (2) :271 - 280.
  • 3Little J, et al. Vision-based mobile robot localization and map- ping using scale-invariant features [ A ]. Proceedings of the IEEE Conference on Robotics & Automation [ C ], 2001, 2051 - 2058.
  • 4Vails Miro J, Dissanayake G, Zhou W. Vision-based slam using natural features in indoor environments [ A ]. Proceedings of IEEE International Conference on Intelligent Networks, Sensor Networks and Information Processing[ C ], 2005.
  • 5Lowe D. Distinctive image features from scale-invariant key- points [ J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 6Sire R, Elinas P M, Griffin, et al. Vision-based slam using the rao-blackwellised particle filter [ J ]. IEEE Transaction on Pat- tern Analysis and Machine Intelligence ,2002,24 (7) :865 - 879.
  • 7Booij O, Zivkovic Z, Krose B. Efficient data association for view based SLAM using connected dominating sets[ J]. Robotics and Autonomous Systems,2009,6 (6) :219 - 231.
  • 8王晓华,傅卫平,梁元月.提高SIFT特征匹配效率的方法研究[J].机械科学与技术,2009,28(9):1252-1255. 被引量:18
  • 9郭剑辉,赵春霞,石杏喜.一种改进的联合相容SLAM数据关联方法[J].仪器仪表学报,2008,29(11):2260-2265. 被引量:12
  • 10周武,赵春霞.SLAM问题的一种优化数据关联算法[J].机器人,2009,31(3):217-223. 被引量:12

二级参考文献25

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 3SMITH R, SELF M, CHEESEMAN P. Estimating uncertain spatial relationships in robotics [ C ]. Proceedings of Conference on Uncertainty in Artificial Intelligence, Amsterdam: North-Holland, 1988:435-461.
  • 4ZHANG S, XIE L H, ADAMS M. An efficient data association approach to simultaneous localization and map building[ C]. IEEE International Conference on Robotics and Automation, 2004( 1 ) :854-859.
  • 5WIJESOMA W S, PERERA L D L, ADAMS M D. Toward multidimensional assignment data association in robot localization and mapping [ J ]. IEEE Transactions on Robotics, 2006,22(2) :350-365.
  • 6NEIRA J, TARDOS J D. Data association in stochastic mapping using the joint compatibility test [ J ]. IEEE Trans. Robot. Autom., 2001,17(6) :890-897.
  • 7GUIVANT J, NEBOT E M. Optimization of the simultaneous localization and map building algorithm for real time implementation [J]. IEEE Trans. Robot. Automat. , 2001,17:242-257.
  • 8BAR-SHALOM Y, FORTMANN T E. Tracking and data association[ M ]. Boston, MA :Academic, 1988.
  • 9BAILEY T, DURRANT-WHYTE H. Simultaneous localization and mapping ( SLAM ) : Part Ⅱ - state of the art [J]. IEEE Robotics and Automation Magazine, 2006,13 (3) :108-117.
  • 10NIETO J, GUIVANT J, NEBOT E, et al. Real time data association for FastSLAM [ C ]. IEEE Int. Conf. Robot. Autom. , Taipei, Taiwan, R. O. C. , Sep. 14-19, 2003: 412-418.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部