摘要
针对P2P网络的动态性、分布性等特点,提出了一种非集中式的网络资源管理模式,并在此基础上引入了蚁群算法(Ant Colony Optimizadon,ACO)。它通过对信息素的更新,为智能选择下一搜索节点提供依据。通过实验证明,此种方法同BFS算法相比,在很相近的资源发见成功率的前提下,资源开销明显减少,整个系统具有较好的性能。
According to the characteristics of dynamics and distributivity, which P2P network shows, the network-resource management pattern in decentralized way is submitted and Ant Colony Optimization is followed. It offers the reference for searching next node intelligently by updating pheromone. Compared with breadth-first search optimization (BFS), the ACO reduces a large number of resource expense based on the very similar success rate of resource discovery and the all system of P2P gains a good performance.
作者
陈巧
熊秋娥
CHEN Qiao, XIONG Qiu-e (Morden Education and Techonogy center,NanTong University,Nantong 226019, China)
出处
《电脑知识与技术》
2011年第10期6934-6936,共3页
Computer Knowledge and Technology
基金
江苏省教育技术研究所2011年度立项课题2011-R-19738
江苏省教育技术研究所十一·五规划2008滚动重点课题:8151