摘要
<正> Circular dichroism spectral and fluorescence decay methods have been employed to determine the conformations of mono[6-(p-tolylseleno)-6-deoxy]-p-CD(1), mono(6-anilino-6-deoxy) β -CD (2) and mono[6-(L-tryptophan)-6-deoxy]-β-CD (3) in phosphate buffer solution (pH 7.2, 0.1 mol dm-3) at 298.15 K. The results indicate that compounds 2 and 3 formed self-inclusion complexes in aqueous buffer solution, while the substituent of compound 1 was not included into cyclodextrin cavity at all. Furthermore, the complex stability constant (logKs) and Gibbs free energy change (-ΔG° ) of these three cylcodextrin derivatives with several cycloalkanols have been determined by circular dichroism spectral titration in phosphate buffer solution at 298.15 K. It is found that the location of the substituent affects the stability of host-guest complex in aqueous solution.
Circular dichroism spectral and fluorescence decay methods have been employed to determine the conformations of mono[6-(p-tolylseleno)-6-deoxy]-p-CD(1), mono(6-anilino-6-deoxy) β -CD (2) and mono[6-(L-tryptophan)-6-deoxy]-β-CD (3) in phosphate buffer solution (pH 7.2, 0.1 mol dm-3) at 298.15 K. The results indicate that compounds 2 and 3 formed self-inclusion complexes in aqueous buffer solution, while the substituent of compound 1 was not included into cyclodextrin cavity at all. Furthermore, the complex stability constant (logKs) and Gibbs free energy change (-ΔG° ) of these three cylcodextrin derivatives with several cycloalkanols have been determined by circular dichroism spectral titration in phosphate buffer solution at 298.15 K. It is found that the location of the substituent affects the stability of host-guest complex in aqueous solution.