期刊文献+

WEAK TYPE(1,1)BOUNDS FOR A MARCINKIEWICZ INTEGRAL

WEAK TYPE(1,1)BOUNDS FOR A MARCINKIEWICZ INTEGRAL
下载PDF
导出
摘要 In this paper, the two-dimensional Marcinkewicz integral introduced by Stein μ(f)(x)=(∫_0~x|∫_(|x-y|≤1) _(|x-y|)^(Ω(x-y))f(y)dy|~2t^(-3)dt)~2 is shown to be of weak type (1,1) and weighted weak type (1,1) with respect to power weight |x|~' if - 1< α< 0, where Ω is homogeneous of degree 0. has mean value 0 and belongs to Llog^+L(S^1). In this paper, the two-dimensional Marcinkewicz integral introduced by Stein μ(f)(x)=(∫_0~x|∫_(|x-y|≤1) _(|x-y|)^(Ω(x-y))f(y)dy|~2t^(-3)dt)~2 is shown to be of weak type (1,1) and weighted weak type (1,1) with respect to power weight |x|~' if - 1< α< 0, where Ω is homogeneous of degree 0. has mean value 0 and belongs to Llog^+L(S^1).
出处 《Analysis in Theory and Applications》 1994年第2期54-66,共13页 分析理论与应用(英文刊)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部