期刊文献+

迭代公式的一种加速收敛方法 被引量:1

A Method of Accelerating Convergence for Iterative Formula
下载PDF
导出
摘要 基于求解非线性方程迭代公式收敛速度的定义,提出了一种新的迭代加速方法,特别对具有p(p≥2)阶收敛的迭代公式可以至少加速到p2+1阶,当1<p<2时,收敛阶可以提高到p2+p-1阶,另外也讨论了p=1的情形. A new iterative method is presented based on the definition of convergence rate for iterative formula of solving nonlinear equation.Especially this method can accelerate p(p≥2) order convergence of the iterative formula to p^2+1 order at least and also to p^2+p-1 order when 1〈p〈2.The case of p=1 is also discussed in this paper.
作者 李海合
出处 《甘肃科学学报》 2011年第4期85-89,共5页 Journal of Gansu Sciences
关键词 非线性 迭代公式 收敛阶 nonlinear equation iterative formula convergent order
  • 相关文献

参考文献10

  • 1Richard L Burden, J Douglas Faires. Numerical Analysis (Seventh Edition) [M]. Beijing: Higher Education Press, Thomson Learning, Inc. ,2003:55-90.
  • 2Burden R L,Faires J D. Numerical Analysis[M]. Beijing: Higher Education Press,2007:86-90.
  • 3杨明波,卢建立.多点New ton-Raphson迭代的新几何解释[J].河南师范大学学报(自然科学版),2004,32(1):21-24. 被引量:6
  • 4杨明波,杨敏,卢建立.Muller法的一种改进方法[J].河南师范大学学报(自然科学版),2007,35(4):38-40. 被引量:14
  • 5隋允康,张学生,陆贤英.一个比Newton法收敛快而稳的两点切线法[J].大连理工大学学报,1995,35(6):899-902. 被引量:5
  • 6Wu X Y,Wu H W. On a Class of Quadratic Convergence Iteration Formulae Without Derivatives[J]. Appl. Math. Compute, 2000,107: 77-80.
  • 7Zheng Quan. A Steffensen-like Method and Its Variants[J]. Applied Mathematics and Computation,2009,214(1) :10-16.
  • 8Vij esh V A, Subrahmanyam P V. A Newton-like Method and Its Application[J]. J Math Appl, 2008,339 ( 2 ) : 1 231-1 242.
  • 9Shen Weiping, Li Chong. Kantorovich-type Convergence Criterion for Inexact Newton Methods[J]. Applied Numerical Mathematics, 2009,59(7) :1 599-1 611.
  • 10熊世春,阿不都热西提.讨论埃特金加速法的收敛性[J].新疆大学学报(自然科学版),2005,22(4):412-415. 被引量:5

二级参考文献14

共引文献22

同被引文献9

  • 1隋允康,张学生,陆贤英.一个比Newton法收敛快而稳的两点切线法[J].大连理工大学学报,1995,35(6):899-902. 被引量:5
  • 2徐长发,王敏敏,王宁昊.大范围求解非线性方程的加速迭代法[J].华中科技大学学报(自然科学版),2006,34(4):122-124. 被引量:3
  • 3华东师范大学数学系.数学分析(上册)[M].北京:高等教育出版社,1999.
  • 4Yamamoto T, Historical Developments in Convergence Analy- sis for Newton's and Newton-like Method [J]. Journal of Computational and Applied Mathematics, 2000, 124 (1/2): 1-23.
  • 5Richard L. Burden, J. Douglas Faires. Numerical Analysis [M]. Hh. London: Higher Education Press, Thomson Learn- ing,Inc. ,2003.
  • 6Wu X Y,Wu H W. On a Class of Quadratic Convergence Iter- ation Formulae Without Derivatives[J]. Appl. Math. Com- pute, 2000,107 : 77-80.
  • 7Zheng Quan. A Steffensen-like Method and Its Variants[J]. Applied Mathematics and Computation, 2009,214 (1):10-16.
  • 8Vijesh V A,Subrahmanyam P V. A Newton-like Method and Its Application[J]. J Math Appl,2008,339(2):1 231-1 242.
  • 9Shen Weiping, Li Chong. Kantorovich-type Convergence Cri- terion for Inexact Newton Methods[J]. Applied Numerical Mathematics,2009,59(7):1 599-1 611.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部