期刊文献+

引力搜索算法的改进 被引量:43

Enhanced version of gravitational search algorithm:weighted GSA
下载PDF
导出
摘要 引力搜索算法GSA(Gravitationa lSearch Algorithm)是最近由Esmat Rashedi基于引力定律提出的一个新算法。在引力搜索算法的基础上对其进行改进,得到了基于权值的引力搜索算法。与引力搜索算法相比,该算法在每一次迭代的过程中,都对粒子的惯性质量加一个权值。用算法对许多基准函数测试的实验效果表明,该方法可以使得引力搜索算法得到更好的结果。 Gravitational Search Algorithm(GSA) based on the law of gravity is proposed recently by Esmat Rashedi.In the paper, weighted GSA is proposed as the enhanced version of GSA.Compared with GSA, the proposed algorithm assigns a weighted value to inertia mass of every agent in each iteration process.The experimental results show the proposed algorithm can obtain better solutions for a lot of the benchmarking functions than GSA.
作者 徐遥 王士同
出处 《计算机工程与应用》 CSCD 北大核心 2011年第35期188-192,共5页 Computer Engineering and Applications
关键词 引力搜索算法(GSA) 引力定律 惯性质量 权值 基准函数 Gravitational Search Algorithm(GSA) law of gravity inertia mass weighted value benchmarking functions
  • 相关文献

参考文献12

  • 1Karakuzu J, Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, 1995,4:1942-1948.
  • 2Tang K S, Man K F, Kwong S, et al.Genetic algorithms and their applications[J].IEEE Signal Processing Magazine, 1996, 13 (6) :22-37.
  • 3Kirkpatrick S, Gelatto C D, Vecchi M EOptimization by simulated annealing[J].Science, 1983,220: 671-680.
  • 4Dorigo M, Maniezzo V, Colomi A.The ant system: optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man,and Cybernetics:Part B, 1996,26(1) :29-41.
  • 5Rashedi E, Nezamabadi-pour H, Saryazdi S.GSA: a gravitational search algorithm[J].lnformation Sciences,2009, 179(13) :2232-2248.
  • 6Kenyon I R.General relativity[M].[S.1.]:Oxford University Press, 1990.
  • 7Du W, Li B.Multi-strategy ensemble particle swarm optimization for dynamic optimization[J].Information Science, 2008, 178 (15) : 3096-3109.
  • 8Lin Y L, Chang W D, Hsieh J G.A particle swarm optimization approach to nonlinear rational filter modeling[J].Expert Systems with Applications,2008,34(2) : 1194-1199.
  • 9Nezamabadi-pour H, Saryazdi S, Rashedi E.Edge detection using ant algorithm[J].Soft Computing,2006,10: 623-628.
  • 10Liu Y,Yi Z,Wu H, et al.A tubu search approach for the mini mum sum-of-squares clustering problem[J].Information Science, 2008, 178 (12) : 2680-2704.

二级参考文献14

  • 1Kennedy J, Eberhart R C. Particle swarm optimization// Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948.
  • 2Shi Y, Eberhart R C. A modified particle swarm optimizer// Proceedings of the IEEE International Conference on Evolutionary Computation, 1998:69-73.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea, 2001: 1011-106.
  • 4Clerc M. The swarm and the queen: Toward a deterministic and adaptive particle swarm optimization//Proceedings of the Congress on Evolutionary Computation, 1999: 1951-1957.
  • 5Corne D, Dorigo M, Glover F. New Ideas in Optimization. McGraw Hill, 1999:379-387.
  • 6Angeline P J. Using selection to improve particle swarm optimization//Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, USA, 1998:84-89.
  • 7Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences//Proceedings of the 7th Annual Conference on Evolutionary Programming. Germany, 1998:601-610.
  • 8Suganthan P N. Particle swarm optimizer with neighborhood topology on particle swarm performance//Proeeedings of the 1999 Congress on Evolutionary Computation, 1999: 1958- 1962.
  • 9Kennedy J. Small worlds and Mega-minds: Effects of neighborhood topology on particle swarm performance//Proceedings of the Congress on Evolutionary Computation, 1999 1931-1938.
  • 10Peram T, Veeramachaneni K, Mohan C K. Fitness-distanceratio based particle swarm optimization//Proeeedings of the Swarm Intelligence Symposium. Indianapolis, Indiana, USA, 2003: 174-181.

共引文献60

同被引文献366

引证文献43

二级引证文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部