期刊文献+

基于改进FP_Growth算法在中药提取信息中研究 被引量:2

Research of traditional Chinese medicine data mining based on improved FP-Growth algorithm
下载PDF
导出
摘要 中药提取在中药生产中占有十分重要地位,企业在生产中药过程中,生产过程数据和质量数据存在一定的问题。数据挖掘技术的出现及利用k-means聚类算法和改进的FP_Growth算法对中药生产过程数据进行分析,既能为企业提高生产效率,降低成本,又保证产品的质量。因此对中药提取信息数据挖掘不仅是有必要的,更具有实际意义。 Chinese medicine extraction plays a very important role in the production of tradition- al Chinese medicine. There are some problems in the process data and quality data from enterprises' Chinese medicine production. The emergence of data mining techniques and the use of k - means clustering algorithm and improved FP - Growth algorithm to analyze the data of traditional Chinese medicine production process, both improved enterprises productivity and reduced costs, and as well as ensure product quality. Therefore, data mining of Chinese medicine extraction is necessary and practical.
作者 马健 董辉
出处 《楚雄师范学院学报》 2011年第9期17-23,共7页 Journal of Chuxiong Normal University
关键词 数据挖掘 关联规则 中药提取 FP—Growth算法 Data mining association rules Chinese medicine extraction FP - Growth algo- rithm
  • 相关文献

参考文献4

二级参考文献18

  • 1Park J S, Chen M S, Yu P S. An Effective Hash Based Algorithm for Mining Association Rules.In: Proc. of the 1995 ACM-SIGMOD Conf. on Management of Data,1996:175-186
  • 2Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation.In:Proc.of 2000 ACM-SIGMOD Int.Conf.on Management of Data, Dallas, TX, 2000
  • 3Bayardo R J. Efficiently Mining Long Patterns From Databases. In SIGMOD'98, 1998:85-93
  • 4Zaki M J. Parthasarathy S, Ogihara M,et al. New Algorithms for Fast Discovery of Association Rules. In: Proc. of the Third Int'l Conf. on Knowledge Discovery in Databases and Data Mining, 1997:283 -286
  • 5Zou Q, Chu WW, Johnson D, et al. AP Pattern Decomposition (PD) Algorithm for Finding All Frequent Patterns in Large Datasets. In:Proceeding of the IEEE International Conference on Data Mining, San Jose, California, 2001
  • 6GANTER B,WILLE R.Formal concept analysis:mathematical foundations[M].Berlin:Springer-Verlag,1999.
  • 7GODIN R,MISSAOUI R,ALAOUI H.Incremental concept formation algorithms based on galois (concept) lattices[J].Computational Intelligence,1995,11(2):246-267.
  • 8MERWE D van der,OBIEDKOV S,KOURIE D.AddIntent:a new incremental algorithm for constructing concept lattice:proc.of the Second International Conference on Formal Concept Analysis(ICFCA2004)[C].Sydney:[s.n.],2004:372-385.
  • 9PASQUIER N,BASTIDE Y,et al.Efficient mining of association rules Using closed itemset lattices[J].Information Systems,1999,24(1):25-46.
  • 10ZAKI M J,HSIAO C J.CHARM:an efficient algorithm for closed association rule mining,technical report 99-10[R].[S.l.]:Rensselaer Polytechnic,1999.

共引文献10

同被引文献23

  • 1崔巴特尔,胡晓彦,崔磊.大学生体质健康评价体系与运动处方的研究开发[J].北京体育大学学报,2004,27(7):927-929. 被引量:46
  • 2陆安生,陈永强,屠浩文.决策树C5算法的分析与应用[J].电脑知识与技术(技术论坛),2005(3):17-20. 被引量:16
  • 3王明俊,王玲,王萍.大学生体质健康评价指标权值与贡献率关系的思考[J].山东体育学院学报,2007,23(2):78-79. 被引量:7
  • 4李金娟,王卫锋.基于FP-growth算法在学生成绩中的关联规则分析[J].巢湖学院学报,2007,9(6):30-33. 被引量:5
  • 5Keogh E, Pazzani M. A simple dimensionality reduction technique forfast similarity search in large time series databases[ C]//4th Pacific-A-sia Conference on Knowledge Discovery and Data Mining ( PAKDD),Kyoto,Japan,2000:122 -133.
  • 6Jessica Lin, Eamonn Keogh, Stefano Lonardi, et ai. Asymbolic represen-tation of time series,with implications for streaming algorithms[ C ]//Proceedings of the 8th ACM SIGMOD workshop on Research issues indata mining and knowledge discovery ,2003 :2-11.
  • 7Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns WithoutCandidate Generation [ C ]//Proc. of ACM-SIGMOD Int * 1 Conf. onManagement of Data. Dallas,USA:ACM Press,2000.
  • 8Wang Changying,Zhang Jie. Coastline interpretation based on associa-tion rule from multi-spectural remote sensing images[ J] . InternationalJournal of Remote Sensing,2010,31 (24) :6409 -6423.
  • 9Tomas Flouri, Jan Janousvek, Borvivoj Melichar. Subtree Matching byPushdown Automata[ J]. ComSIS,Special Issue,2010,7(2).
  • 10Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, et al. Dimen-sionality Reduction for Fast Similarity Search in Large Time Series Da-tabases [J ]. Knowledge and Information System,2000,3 (3 ): 263-286.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部