期刊文献+

寒区隧道地源热泵型供热系统岩土热响应试验 被引量:40

ROCK-SOIL THERMAL RESPONSE TEST OF TUNNEL HEATING SYSTEM USING HEAT PUMP IN COLD REGION
下载PDF
导出
摘要 为解决寒区隧道冻害问题,将地源热泵型供热系统应用于内蒙古博牙高速林场隧道中。通过开展寒区隧道地源热泵供热系统岩土热响应试验,研究热交换管管内循环介质的入口温度、流量和管间距对换热量的影响以及热交换对隧道围岩和衬砌温度场的影响。试验结果表明:管内循环介质的流量一定时,换热量随着入口温度的增加而呈线性增加;管内循环介质的入口温度一定时,换热量随着流量的增加而呈指数增加。增加流量可以提高热交换管内循环介质的换热能力,但却增加管内循环介质与管壁之间的阻力,建议热交换管管内循环介质流量不宜超过0.75 m3/h。热交换管间距为100和50 cm时,围岩温度场的影响深度分别约为75和100 cm。热交换管间距越小,围岩温度场的影响范围则越大,温度增量也越大。 In order to prevent freezing damage of tunnels in cold region, tunnel heating system using heat pump was introduced for the first time at Linchang tunnel in Inner Mongolia Autonomous Region of China. The rock-soil thermal response test was carried out to study the influence of the inlet temperature, flow rate and pipes distance on extracted heat and the influence of heat exchange on temperature field of surrounding rock and primary lining. It can be found that the extracted heat varies with the inlet temperature linearly and with flow rate exponentially. Although the extracted heat can be improved by increasing the flow rate, there is more resistance to fluid in heat exchange pipes, it will be uneconomical if the flow rate is great~ it is suggested that the flow rate is no more than 0.75 m3/h. The affected depth of surrounding rock temperature is 75 cm when the heat exchange pipes distance is 100 cm, and is 100 cm when the heat exchange pips distance is 50 cm. The less the heat exchange pipes distance, the greater the affect depth of surrounding rock temperature and the temperature increment.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2012年第1期99-105,共7页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(50878150) 交通部西部交通建设科技项目(2009318822047) 长江学者和创新团队发展计划资助项目(IRT1029)
关键词 隧道工程 寒区隧道 地源热泵 热交换管 岩土热响应试验 tunnelling engineering tunnel in cold region heat pump heat exchange pipes rock-soil thermal response test
  • 相关文献

参考文献9

  • 1夏才初.寒区公路隧道防冻保暖技术及其发展趋势[C].2009年全国公路隧道学术交流会论文集.重庆:重庆大学出版社,2009.
  • 2BRANDL H. Energy foundations and other thermo-active structures[J] Geotechnique, 2006, 56(2): 81- 122.
  • 3ADAM D, MARKIEWICZ R. Energy from earth-coupled structures, foundation, t uunelandsewers[J]. Geoteehnique, 2009, 59(3): 229- 236.
  • 4IALAM M S, FUKUHARA T, WATANABE H, et al. Horizontal U-tube road heating system using tunnel ground heat[J]. Journal of Snow Engineering of Japan, 2006, 22(3): 23 - 28.
  • 5IALAM M S, FUKUHARA T, WATANABE H. Simplified heat transfer model of horizontal U-tube(HUT) system[J]. Journal of Snow Engineering of Japan, 2007, 23(3): 232-239.
  • 6夏才初,曹诗定,王伟.能源地下工程的概念、应用与前景展望[J].地下空间与工程学报,2009,5(3):419-424. 被引量:63
  • 7中华人民共和国国家标准编写组.GB50366--2009地源热泵系统工程技术规范[s].北京:中国建筑工业出版社,2009.
  • 8LI X, CHEN Y, CHEN Z, et al. Thermal performances of different types of underground heat exchangers [J]. Energy and Building, 2006, 38(5): 543 - 547.
  • 9GAO J, ZHANG X, LIU J, et al. Thermal performance and ground temperature of vertical pile-foundation heat exchangers: a case study[/]. Applied Thermal Engineering, 2008, 28(17/18): 2 295 - 2 304.

二级参考文献7

  • 1W Unterberger,H Hofinger,T Grünstudl,etc.Utilization of Tunnels as Sources of Ground Heat and Cooling-Practical Applications in Austria.http://www.ic-vienna.at.
  • 2Brandl,H.Energy piles and diaphragm walls for heat transfer from and into ground.3rd International Geotechnical Seminar,Deep Foundations and Auger Piles Ⅲ.University of Gent,Belgium.Proceedings:A.A.Balkema,Rotterdam,1998.
  • 3Brandl,H.Energy Piles for heating and cooling of buildings.Seventh International Conference & Exhibition on Pilling and Deep Foundations,Vienna,Austria,1998.
  • 4Brandl,H.Energy foundations and other thermo-active ground structures[J].Geotechnique,2006,56(2),81-122.
  • 5王贵玲,蔺文静,韩玉英,范琦,张薇.浅层地热能研究现状及亟待开展的工作[J].工程建设与设计,2007(11):1-4. 被引量:16
  • 6刁永飞,张小力,伍贻文.地源热泵的优越性及前景展望[J].能源研究与信息,2002,18(1):33-37. 被引量:29
  • 7张佩芳.地源热泵在国外的发展概况及其在我国应用前景初探[J].制冷与空调,2003,3(3):12-15. 被引量:24

共引文献67

同被引文献320

引证文献40

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部